

i4Q has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 958205.

D3.6 – i4Q IIoT
Security Handler

WP3 – BUILD: Manufacturing
Data Quality

1 i4Q D3.6 – IIoT Security Handler

Document Information

GRANT AGREEMENT
NUMBER

958205 ACRONYM i4Q

FULL TITLE Industrial Data Services for Quality Control in Smart Manufacturing

START DATE 01-01-2021 DURATION 36 months

PROJECT URL https://www.i4q-project.eu/

DELIVERABLE D3.6 – i4Q IIoT Security Handler

WORK PACKAGE WP3 – BUILD: Manufacturing Data Quality

DATE OF DELIVERY CONTRACTUAL June 2022 ACTUAL June 2022

NATURE Report DISSEMINATION LEVEL Public

LEAD BENEFICIARY IKERLAN

RESPONSIBLE AUTHOR Aitor Uribarren (IKER)

CONTRIBUTIONS FROM 15-FBA, 24-FIDIA

TARGET AUDIENCE
1) i4Q Project partners; 2) industrial community; 3) other H2020
funded projects; 4) scientific community

DELIVERABLE
CONTEXT/
DEPENDENCIES

This document describes a service that distributes trust across the
architecture using a hardware secure module as trust anchor point.

A second version will be provided namely “D3.14 i4Q IIoT Security
Handler v2”.

EXTERNAL ANNEXES/
SUPPORTING
DOCUMENTS

None

READING NOTES None

ABSTRACT

To fight against a growing range of cyber-related risks, industrial
enterprises need rapid and demonstrable improvements in their
Operational Technology (OT) and Industrial Control Systems (ICS)
cyber security. Because of their potential impact on system
performance, utilities and other users of these systems may be
cautious to embrace popular security technologies.

This document presents general description and technical application
i4Q IIoT Security Handler (i4QSH) which is a proposal of an
implementation of a PKI to provide trust in the i4Q ICS ecosystem.

https://www.i4q-project.eu/

2 i4Q D3.6 – IIoT Security Handler

Document History

VERSION ISSUE DATE STAGE DESCRIPTION CONTRIBUTOR
0.1 12-May-2022 ToC ToC created and sent for

review
IKERLAN

0.2 10-Jun-2022 Working
Version

1st input to all sections IKERLAN

0.3 17-Jun-2022 1st Draft First draft sent for internal
review

IKERLAN

0.4 20-Jun-2022 Internal
review

Internal review FBA, FIDIA

0.5 24-Jun-2022 2nd Draft Addressing the comments
from the internal review.
Updated draft sent to the
coordinator.

IKERLAN

1.0 30-Jun-2022 Final doc Final quality check and issue
of final document

CERTH

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible
for any use that may be made of the information it contains.

Copyright message

© i4Q Consortium, 2022
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

3 i4Q D3.6 – IIoT Security Handler

TABLE OF CONTENTS
Executive summary .. 7

Document structure ... 8

1. General Description ... 9

1.1 Overview .. 9

1.2 Features .. 9

1.2.1 Authentication ... 10

1.2.2 Privacy .. 10

1.2.3 Integrity ... 10

1.2.4 Non-repudiation ... 11

2. Technical Specifications .. 12

2.1 Overview .. 12

2.2 Certificate Life Cycle Management ... 12

2.2.1 Certificate Handler ... 12

2.2.2 Certificate Issuer ... 12

2.2.3 Certificate Status Manager .. 13

2.2.3.1 Status Checking ... 13

2.2.3.2 Certificates Renewal .. 13

2.2.3.3 Certificate Revocation ... 14

2.2.4 Certificate Holder ... 14

2.3 OPC-UA ... 15

2.3.1 Connection Security .. 15

2.3.2 Security Configuration .. 16

2.3.3 User Authentication ... 16

2.3.4 Certificate handling ... 16

2.3.5 Certificate Management ... 19

3. Implementation Status .. 21

3.1 Current implementation .. 21

3.1.1 Virtualbox ... 21

3.1.2 HSM .. 21

3.1.3 EJBCA .. 22

3.1.3.1 CA creation .. 23

4 i4Q D3.6 – IIoT Security Handler

3.1.3.2 User Certificate Creation .. 23

3.1.4 Connection API’s ... 24

3.1.4.1 API-WS Interface ... 24

3.1.4.2 API-Rest Interface ... 25

3.2 Next developments ... 25

3.3 History ... 25

4. Conclusions ... 26

References .. 27

Appendix I ... 28

LIST OF FIGURES
Figure 1. Generic certificate issuance view ... 12
Figure 2. New certificate creation flow .. 13
Figure 3. Certificate status checker flow ... 13
Figure 4. Certificates renew flow ... 14
Figure 5. Certificates revocation flow ... 14
Figure 6. Certificate deal with ... 17
Figure 7. CA Certificate handling ... 19
Figure 8. CardContact USB-Token HSM ... 21
Figure 9. Main view of Ejbca PKI manager ... 23
Figure 10. ‘i4Q One CA’ certificate information ... 23
Figure 11. User certificate information .. 24

LIST OF TABLES
Table 1. History .. 25

5 i4Q D3.6 – IIoT Security Handler

ABBREVIATIONS/ACRONYMS
API

CA

CIA

COTS

CRL

CSR

EST

HSM

HTTP

ICS

IIoT

IP

IT

JAX-WS

JSON

OCSP

OPC

OPC-UA

OpenSSL

OS

OT

PHP

PKI

RA

REST

SDK

SOAP

Application Programming Interfaces

Certification Authority

Confidentiality, Integrity and Availability

Commercial Off-The-Shelf

Certificate Revocation List

Certificate Signing Request

Enrollment over Secure Transport

Hardware Security Module

HyperText Transfer Protocol

Industrial Control Systems

Industrial Internet of Things

Internet Protocol

Information Technology

Java API for XML Web Services

JavaScript Object Notation

Online Certificate Status Protocol

Open Platform Communications

OPC Unified Architecture

Open Secure Sockets Layer

Operational System

Operational Technology

Hypertext Preprocessor

Public Key Infrastructure

Registration Authority

Representational State Transfer

Software Development Kit

Simple Object Access protocol

TCP

TLS

URI

 Fieldbus communication

Transport Layer Security

Uniform Resource Identifier

6 i4Q D3.6 – IIoT Security Handler

URL

VA

WSDL

Uniform Resource Locator

Validation Authority

Web Services Description Language

7 i4Q D3.6 – IIoT Security Handler

Executive summary
This deliverable provides the specification and design of the i4Q Security handler (i4QSH) to
provide trust in Industrial control system (ICS) by means of a Public Key Infrastructure, that is
being developed by IKERLAN in i4Q.

An ICS is a collection of control systems that work together to achieve a certain industrial goal.
The integration of operational technology (OT) and information technology (IT) in ICS has boosted
operational and financial efficiency, but it has also opened the door to greater risks, including
system outages and espionage. Today a control system is vulnerable to cyber-attacks in many
ways and control system engineers need to be well aware of subjects such as ICS security and
SCADA security. This document presents a proposal to use X.509 certificates to provide trust in
i4Q ICS ecosystem.

8 i4Q D3.6 – IIoT Security Handler

Document structure
Section 1: Contains a brief introduction of the i4Q IIoT Security Handler, providing an overview
and the list of main features provided by a PKI. It is addressed to final users of the i4Q Solution.

Section 2: Contains a general description and the technical specifications of the i4Q IIoT Security
Handler, providing an overview and its architecture diagram. It is addressed to software
developers.

Section 3: Details the implementation status of the i4Q IIoT Security Handler, explaining the
current development status, next integration steps and summarizing the implementation history.
It is addressed to software developers.

Section 4: Provides the conclusions.

APPENDIX I: Provides the PDF version of the i4Q IIoT Security Handler web documentation, which
can be accessed online at: http://i4q.upv.es/6_i4Q_SH/index.html

http://i4q.upv.es/6_i4Q_SH/index.html

9 i4Q D3.6 – IIoT Security Handler

1. General Description

1.1 Overview

According to several surveys, the amount of cyberattacks on operational technology (OT) is on the
rise [1]. Almost 22,000 vulnerabilities were published in 2021 [2]. Organizations use OT to
manage physical industrial equipment, assets, processes, and events using a combination of
technology, software, and hardware. In these OT environments, Industrial Control Systems (ICS)
are widely used to monitor and control industrial processes, such as those in the manufacturing,
transportation, and pharmaceutical sectors, as well as critical infrastructures like electricity, water
treatment plants, and oil and gas refineries [3].

Traditionally, ICS is designed to function on customized hardware and/or software that is
physically separated from the outside world, this is no longer the case. ICSs have used a variety
of information technology (IT) solutions, such as commercial off-the-shelf (COTS) elements,
remotely enabled connections, standardized OS, and cloud-based solutions. This development,
combined with the usage of insecure industrial protocols like DNP3, OPC, and MODBUS, raises
the risk of security flaws and incidents [4][5]. As a result, ICSs are susceptible to the same
vulnerabilities as any other system, such as buffer overflows, hardcoded credentials,
authentication bypass, cross-site scripting, missing authentication, and hardware chip
vulnerabilities [6].

Cryptography is one of the most important strategies used by organizations to protect the systems
that store their most precious asset or information, whether it is in transit or at rest. Data can
include client, worker, intellectual property, ICS business policies, and any other classified
information. As a result, cryptography is critical infrastructure, as cryptographic solutions are
becoming increasingly reliant on the security of sensitive data. It can help protect secret
information and sensitive material, and also increase client-server communication security. In
other words, even if an unwanted person or entity has access to your data, they will be unable to
read it.

Public Key Infrastructure (PKI) is used to create a trust chain that allows a person, service,
machine, or application to be authorized, a secure connection to be formed, or the provenance of
software or documents to be validated. This is accomplished through certificates, which a PKI
creates, manages, and distributes while also having the ability to revoke. The public key in a
certificate must be kept safe and secret, and the private key must be kept safe and hidden as well.
It'll have to be stored in a hardware security module (HSM).

1.2 Features

A PKI certificate is a digitally signed document that functions similarly to a real identity card or
passport in everyday life. Private and public keys are used in public-key cryptography, and the
certificate is used to prove possession of the public key by storing it alongside information about
the owner and some administrative data. The issuing CA signs the certificate, and the signature
is included in the certificate. The most widely used digital certificate formats are defined by the
X.509 standard.

10 i4Q D3.6 – IIoT Security Handler

A digital certificate, as well as the infrastructure that issues the digital certificate, offer the
necessary information and structure:

• Reducing the possibility to prove people's identities using Internet
• Protect messages in transit reducing the possibilities of being read by anyone different

other that the receiver
• Protect electronic messages by lowering the chances of them being tampered with or

altered in the way without the recipient's awareness.
• Allow for non-repudiation of transactions, so that no one can deny taking part in a

legitimate electronic transaction.

In other words, and as specific use cases of PKI certificates can be:

• TLS certificates usage in Secure network communication
• To sign documents and code
• To sign and encrypt emails
• IoT certificates
• Personal authentication

In information security, the three most critical concepts are confidentiality, integrity, and
availability. The relevance of the CIA triad security model speaks for itself, with each letter
expressing a core premise in cybersecurity.

1.2.1 Authentication
Identifying who you are dealing with is one of the most difficult parts of doing business on the
Internet today.

The PKI allows trading partners to be identified online through trustworthy authorities that are
in charge of issuing digital certificates and providing procedures for identifying individuals who
hold those certificates on behalf of a company.

1.2.2 Privacy
Do you know if anyone other than you have ever accessed communications or transactions you've
sent over the Internet? Is it possible for only the intended recipient to read your message?

The technique for protecting information is provided by digital certificates. Messages can be
encrypted to reduce the danger of them being intercepted or read by someone other than the
intended receiver while in transit. This creates a digital version of a registered letter sent through
the mail.

PKI can be used to make messages more private.

1.2.3 Integrity
When conducting business over the Internet, a company needs to know that any transaction
conducted or information provided will not be altered or interfered with during transmission.

11 i4Q D3.6 – IIoT Security Handler

As a fundamental component, the PKI ensures transaction security. The recipient of a
communication can use PKI to verify that the message is still the same as it was when it was
transmitted.

1.2.4 Non-repudiation
PKI creates a mechanism for signing electronic transactions in the same way that a signature is
placed on a document.

A PKI allows to produce one-of-a-kind signatures. When this is combined with suitable policies
and processes, the sender is unable to refute or repudiate a message sent in compliance with
these protocols.

A PKI can be created to ensure that no lawful transaction can be reversed.

12 i4Q D3.6 – IIoT Security Handler

2. Technical Specifications

2.1 Overview

To identify certificate issuance needs, next there will be defined and explained the certificate
release use case. The idea is to show how external certificate requesters will interact with the
PKI.

2.2 Certificate Life Cycle Management

Regarding the certificate issuance there is a main software component called ‘Certificate Handler’
which is responsible for getting the request via the defined API and redirect to the internal
components depending on the request.

2.2.1 Certificate Handler
This is the main component which is in charge of receiving the requests and distribute them to
the most suitable subcomponent.

It will provide different API interfaces to provide distinct ways to connect to the certificate
requesters.

Figure 1. Generic certificate issuance view

2.2.2 Certificate Issuer
This is the component that oversees the creation of the certificates. It is closely related with the
PKI to obtain the required certificates with the requested characteristic.

13 i4Q D3.6 – IIoT Security Handler

Figure 2. New certificate creation flow

As shown in the previous Figure 2, the certificate requester provides a certificate signing request
(CSR) to the ‘certificate handler’. If everything is ok, ‘certificate issuer’ is called in order to create
the certificate. Once the certificate is saved in the ‘certificate holder’, the requested certificate is
returned. And although it is not explicitly shown, if any inconsistence or error is founded in
‘certificate handler’ or in ‘certificate issuer’ or even in saving the certificate in ‘certificate holder’
the certificate request will be rejected, and error message will be returned.

2.2.3 Certificate Status Manager
This is the component which is in charge of the status of the certificates. It manages certificates
status checks, renewals, and revocations.

2.2.3.1 Status Checking
The way the certificate status is checked by any of the clients is using an Online Certificate Status
Protocol (OCSP) request.

Figure 3. Certificate status checker flow

As shown in the previous Figure 3, any entity that wants to check the state of a certificate, sends
a OCSP request. The ‘certificate status manager’ is the component to answer if the certificate is
“good”, “revoked”, or “unknown”.

2.2.3.2 Certificates Renewal
To renew a previously released certificate, the clients will use the Enrollment over Secure
Transport (EST) protocol. The request will be firstly received by the Certificate Handler.

14 i4Q D3.6 – IIoT Security Handler

Figure 4. Certificates renew flow

As shown in the previous Figure 4, first the ‘certificate status manager’ checks that the request is
ok, for example checking that it is not revoked, and in case that everything is ok, a new certificate
is released by the ‘certificate issuer’. Otherwise, the request is rejected by the not ok or ‘status ko’
message.

2.2.3.3 Certificate Revocation
To revoke previously released certificate, the clients will use the corresponding API function
providing the associated privileged parameters.

Figure 5. Certificates revocation flow

As shown in the previous Figure 5, the revocation request will be analysed by the ‘certification
status manager’. If the provided credentials and the associated certificate status is correct, the
certificate will be revoked setting the corresponding revocation reason.

2.2.4 Certificate Holder
This is the component which is in charge of the storage of the certificates. It will be closely related
with the PKI storage system. Typical database functionality such as create, modify or save,
associated to certificates will be held by this component.

15 i4Q D3.6 – IIoT Security Handler

2.3 OPC-UA

OPC Unified Architecture (OPC-UA) is a machine-to-machine communication protocol for
industrial automation developed by the OPC Foundation [7]. It is a protocol for transferring data
in an object-oriented fashion rather than as discrete data points. This makes your plant floor data
more accessible by allowing you to reuse information stored in a shared object. OPC-UA also has
a service-oriented model, which improves security and interoperability with other platforms.

OPC UA's transport protocol provides a stable and dependable communication infrastructure with
techniques for handling lost messages, heartbeats, and failover, among other things. OPC UA is a
high-performance data exchange technology that uses binary-encoded data. Commercial SDK are
available for C, C++, Java, and .NET. On the other hand, open-source stacks are also available at
least for C, C++, Java, Javascript(node) and Python.

Security is built into OPC UA and has been a design goal from the beginning of the development.
OPC UA offers different technology mappings basing either on TCP / IP or on SOAP based web
services. A secure channel is used on top of the transport layer to protect messages from
unwanted alterations and eavesdropping by using encryption and digital signatures. Furthermore,
this layer uses digital certificate-based authentication procedures to authenticate and authorize
particular instances of OPC UA applications. This allows administrators to establish a fine-grained
access control in critical infrastructures such as production facilities and power plants. A session,
that’s represents a connection between a client application and a server, it is used for exchanging
payload representing plant information (e.g., valve status, temperature, status of level indicators),
settings, and commands. Session messages are therefore secured by the secure channel
mentioned above. Users intending to establish sessions on the client side need to be
authenticated and authorized by OPC UA servers. The specification allows three different
mechanisms: Username/password combinations, digital certificates, and WS compliant user
tokens.

The OPC UA security is based on three layers: an application layer that is on top of a second
communication layer that’s relays on the third transport layer. Data transfer is always done over
TCP. TLS is used to encrypt transport layer traffic if the HTTPS protocol is utilized. The
Communication Layer consists of a Secure Channel which can optionally perform message signing
and encryption. This layer maintains the confidentiality and integrity of the exchanged messages
when a secure communication policy is selected. It also allows applications to communicate with
each other to be authenticated. The session, which is used to authenticate and authorize users, is
part of the Application Layer. Because all activities are done in a session, unauthenticated users
cannot view or edit data in the target system. The session always connects using a secure channel,
which is renewed on a regular basis.

2.3.1 Connection Security
The establishment of OPC UA connection ensures the authentication and authorization of
applications using standard security techniques. An Application Instance Certificate is a regular
X.509v3 certificate with certain extra fields for enhanced OPC UA validation for each application
instance. The application developer is responsible for deciding which certificate store the UA
application is tied to. It is feasible, for example, to use an Active Directory's PKI. APIs for UA are

16 i4Q D3.6 – IIoT Security Handler

available in a variety of computer languages. When programs build the Secure Channel between
them, the appropriate RSA public and private keys are utilized to complete a secure handshake.
In the handshake, that in reality is an Open Secure Channel service message, both programs will
perform the authentication of the other side. A symmetric encryption key is also exchanged by
the applications during the handshake, and this key is then used to encrypt all future Secure
Channel messages. AES-128 or AES-256 are used for symmetric encryption.

2.3.2 Security Configuration
Between each connection, OPC UA allows for a free option of the security mode to be employed.
None, Sign, and SignAndEncrypt are the three Message Security Modes defined by the OPC UA
specification. These determine the amount of security that each message receives.
Basic128Rsa15, Basic256, and Basic256Sha256 are some of the other Security Policies defined.
As security requirements grow in the future, new policies can be developed, and old ones can be
phased out. These define the Application Instance Certificates' enabled key sizes, as well as the
signature algorithm and symmetric encryption algorithm that are used.

All OPC UA servers that implement the Standard Server Profile must provide signing and
encryption capabilities with at least the Basic128Rsa15 policy level. Applications implementing
only the Micro or Nano Embedded Server Profile don’t need to provide security capabilities at all.
These policies are available can be configured by the server administrator. The client application
always makes the selection, which security mode is used for each connection. This makes sure
that security is always available and can be easily switched on as necessary.

2.3.3 User Authentication
The authentication of users takes place at the session level. Alternative authentication
mechanisms defined by OPC UA include Anonymous, Username and Password, X.509 certificates,
and external systems for user authentication like Kerberos via outer tokens. The server
applications must again support different alternatives depending on the Server Profile that they
implement. And the client application again selects the authentication type to use for the
connection from the alternatives implemented and configured for the server.

2.3.4 Certificate handling
From the security perspective [8], is critical to provide with unique and appropriate only
administrator read/write access to certificate stores used to hold private key. CRLs, trusted lists,
and trusted CA lists are only accessible by an authorized administrator and, in the case of pull
configurations, the application. Other eligible users may be granted read access, however the list
of individuals who are allowed read access is a site decision.

17 i4Q D3.6 – IIoT Security Handler

Figure 6. Certificate deal with

To deploy a system with security requirements that uses CAs, the following are critical points:

18 i4Q D3.6 – IIoT Security Handler

i. An Application Instance is a single system component installed in the OPC UA
environment. Each implementation has its own Application Identity Certificate, which it
uses to interact to and identify itself with other OPC UA apps. Each Application Instance
is identified by exclusive URIs. The OPC UA Application will communicate with other
applications through a secure channel developed using asymmetric cryptography.

ii. Administrator is the one that control the security settings for Application Instances and
handle the certificates related to an ICS system. This involves determining the contents
of trust lists and overseeing any CA-related operations.

iii. Operator is the individual who utilizes the Application Instance is known as an Operator.
For every particular OPC UA Application, there may be several Operators. Operator uses
the assigned user credentials to verify access rights and continue with the activities of the
Application Instance.

iv. An electronic ID that identifies an Operator/User is referred to as a User Credential. The
Application Instance Certificate can be given to a Server after it has been used to construct
a secure channel. It can be used to track activity and establish access rights (auditing).

v. Certificate Authority: A CA is a person or organization in charge of issuing and
administering certificates. The CA verifies that the data in the Application Instance
Certificate is genuine and signs it with a Digital Signature to ensure that it has not been
tampered with. A certificate is issued to each CA and is used to generate Digital Signatures.
CRLs are also the responsibility of a CA. Most of the time, it's a software suite that an
administrator analyses or retrieves on a regular basis, usually when the application
software raises a warning or notice that requires some sort of check action.

vi. OPC UA Application can have a certificate, which is an electronic ID. The ID contains
information on the holder, the issuer, and a unique key for verifying Digital Signatures
issued with the accompanying Private Key. These Certificates are commonly referred to
as X.509 Certificates because their syntax conforms to the X.509 specification.

vii. A Certificate with no Certificate Authority is known as a self-signed Certificate. These kinds
of certificates can be generated by any person and utilize in independently verifiable
instances. There would be no CA or CRL in a system that only used self-signed certificates.

viii. A secret number that only the Certificate holder knows is known as private key. The holder
of this secret can produce digital signatures and data decryption. The linked Certificate
can no longer be trusted or used if this secret is leaked to unauthorized parties. It can be
substituted or, if it has been issued by a Certificate CA, in can be revoked.

ix. The collection of certificates that an application program trusts is called trust list. If
security is on, connections are not accepted from those that its certificate is not in the
trust list.

x. Certificate Store is a file system location where Certificates and Private Keys can be stored.
The Windows Certificate Store is a registry-based store that is available on all Windows
systems. All UA systems can additionally support an OpenSSL Certificate Store, which is a
file place where the certificates are stored. In all circumstances, the Certificate Store must
be password-protected, with only administrators able to add new entries. Least privilege
concept which means that only those with a genuine need for the data should be granted
read or write access should be followed as concept.

19 i4Q D3.6 – IIoT Security Handler

xi. The revoked certificates by a CA that no longer are valid to run in applications, are
identified in a revocation list.

2.3.5 Certificate Management
Since the security of OPC UA is based on X.509 certificates, the main concern in practice will be
the certificate management. OPC UA specification does not enforce any specific strategy for
managing the certificates.

All OPC UA applications maintain certificates in their own Trust Store. All encountered Application
Instance Certificates from the connecting applications are classified either as trusted or rejected.
This selection can be done on a certificate basis, which is usable, when the number of connections
is small. The applications typically use self-signed certificates by default, which can only be
trusted individually. In a standard security environment, trust is based on CA, which sign
certificates and maintain CRL. CA helps to maintain the trust chain between applications: all
certificates signed by a trusted CA can be trusted automatically, until they are revoked.

The establishment of Public Keys in Trust Lists can turn into burdensome in systems with several
Servers and Clients. The adoption of a proper CA in these situations can substantially ease the
installation and configuration challenges. Additional services provided by the CA include
certificate expiration management and CRL management. Figure 7 gives an example of what this
activity entails [9].

Figure 7. CA Certificate handling

All clients and servers involved are provided by an CA signed certificate by the administrator,
however just the CA Public Key must be deployed on all devices. When a Certificate expires and
needs to be updated, the administrator simply needs to substitute the expired Certificate, and it
is not necessary to copy the public key part to other sites.

20 i4Q D3.6 – IIoT Security Handler

A proprietary CA enables the issuing of certificates to be controlled by the firm. In most
circumstances, using a commercial CA (such as VeriSign) is not advised. In most cases, an OPC UA
application is configured to only trust other applications that the Company has identified as
trustworthy.

All application developers must deal with certificate administration. Some apps may make
advantage of system-wide certificate management, while in other cases, there will create self-
signed certificates during the installation.

So, it is at this point where the Security Handler proposed in the beginning of this document to
use it in the i4Q ecosystem is very well integrated with the OPC UA security part to integrate it
as CA Authority to provide the required certificates to ensure crypto security to the
communications.

21 i4Q D3.6 – IIoT Security Handler

3. Implementation Status

3.1 Current implementation

To start and in a nutshell, just mention that a PKI has been deployed to fulfil previously explained
needs and the requirements in i4Q regarding to digital certificates and electronic identification.
Next the used programs and installation steps will be described.

3.1.1 Virtualbox
To be flexible to install and integrate in already running ICS networks, Virtualbox virtualization
product is proposed to setup the PKI infrastructure. It is flexible enough to integrate with most of
operating systems.

CentOs operating system has been chosen to the first installation, but any other operating system
can be used, such us, Ubuntu, to install in this case the EJBCA PKI manager.

So first, we are required to acquire and install CentOs operating system in a virtualbox running
environment. Once the first installation is made, it would be suitable also to duplicate it and share
between the i4Q partners, avoiding the initial installation phase.

3.1.2 HSM
HSM is a specialised device for keeping cryptographic keys that is extremely safe. It can be used
for signing and authentication and can encrypt, decrypt, create, store, and handle digital keys. The
goal is to keep sensitive information safe and secure, and no whole key can be extracted or
exported from an HSM in a readable format. Businesses require centralized key creation,
administration, and storage, as well as authentication and digital signature capabilities, which
HSM delivers.

EJBCA can be setup to use different branding HSMs. Using PKCS#11 wrapper, HSM providers ease
the integration of these devices in the required applications.

For i4Q the selected HSM has been the CardContact USB-Token [10] shown below in Figure 8.

Figure 8. CardContact USB-Token HSM

To install the procedure described in the manufacturer's site has been followed
https://www.smartcard-hsm.com/support.html. Once the drivers have been installed, it can be
checked that the device is present and ready running different commands:

[ikerlan@localhost ~]$ pkcs11-tool -I

Cryptoki version 2.20

https://www.smartcard-hsm.com/support.html

22 i4Q D3.6 – IIoT Security Handler

Manufacturer: OpenSC Project

Library: OpenSC smartcard framework (ver 0.19)

Using slot 0 with a present token (0x0)

[ikerlan@localhost ~]$ pkcs11-tool -T

Available slots:

Slot 0 (0x0): Identiv uTrust 3512 SAM slot Token [CCID Interface] (55512030601

 token label: UserPIN (SmartCard-HSM)

 token manufacturer: www.CardContact.de

 token model: PKCS#15 emulated

 token flags: login required, rng, token initialized, PIN initialized

 hardware version: 24.13

 firmware version: 4.0

 serial num: DECC1200084

So, the system is ready to continue with the initialization procedure using the command “sc-hsm-
tool” described in the installation procedure indicated before.

Once the HSM is ready, it must be associated with the PKI manager EJBCA. This is done modifying
the web.properties file in ../ejbca/conf directory. The lines that must be modified are:

[ikerlan@localhost ~]$ vi ../Ejbca/conf/web.properties

cryptotoken.p11.lib.60.name=OpenSC

cryptotoken.p11.lib.60.file=/usr/lib64/opensc-pkcs11.so

After saving the modifications Ejbca instance must be redeployed using ant command.

[ikerlan@localhost ~]$ cd ../Ejbca

[ikerlan@localhost ~]$ ant build deployear

3.1.3 EJBCA
As main PKI application program, EJBCA [11] community edition has been installed following the
official installation guides[12]. The development and deployment are flexible enough if in the
future a modification or extension is needed to support more complex PKI architecture, such as
redundancy or the separation of the PKI roles like CA, VA and RA in different running instances.

Up to now, the PKI is ready to run. Next in Figure 9 a view is shown.

23 i4Q D3.6 – IIoT Security Handler

Figure 9. Main view of Ejbca PKI manager

3.1.3.1 CA creation
To check that PKI is able to create a CA, one root CA has been created with the common name
“i4Q One CA” following the EJBCA procedures for this case.

Figure 10. ‘i4Q One CA’ certificate information

3.1.3.2 User Certificate Creation
Now with the previously created CA, there can be created ‘end entity’ certificates. It is named ‘end
entity’ to the final destiny for a certificate, that is, a person, a device, a process... any relevant
element that uses a certificate. Depending on the usage of the certificate, the key usage of the
certificate will be different or shall be adapted. In the certificate shown in Figure 11, which is for
a person, apart from the usual usages of digital signature, data encipherment and non repudiation,
used in encrypted data transmission, email protection and client authentication flags were added,

24 i4Q D3.6 – IIoT Security Handler

therefore the user can integrate it with the preferred email program to encrypt outgoing
messages.

Figure 11. User certificate information

In the same way, the system is ready to configure and issue certificates for IIoT devices or services.

3.1.4 Connection API’s
Once the PKI infrastructure has been deployed, any device or electronic subject identified in the
i4Q ecosystem will request an electronic certificate. Due to the variety of devices and software
components that can request certificates, some standardized way needs to be defined. In
computing this is achieved defining an API.

The fundamental functions are accessed remotely using a Web Service SOAP API Interface over
client-authenticated HTTPS. All development languages that can process SOAP messages are
compatible with the SOAP API. Java, C#, and PHP are examples of programming languages.

3.1.4.1 API-WS Interface
The JAX-WS 2.0 Web Service Interface is used to remotely access basic functions via client
authenticated HTTPS.

Pointing to the EJBCA server URL in the https://SERVER-IP:8443/ejbca/ejbcaws/ejbcaws?wsdl
could be obtained the corresponding WSDL with the description of the functions to use to connect
using web service interface.

https://server-ip:8443/ejbca/ejbcaws/ejbcaws?wsdl

25 i4Q D3.6 – IIoT Security Handler

3.1.4.2 API-Rest Interface
RESTful URLs are used to send API requests, which use the conventional HTTP methods of GET,
POST, and PUT. A JSON request body is also accepted by some endpoints. An HTTP header with
an RFC 2616 status code and an application/json response body are typically included in
responses.

3.2 Next developments

This document described the first approach to the envisaged i4Q PKI architecture.

It is expected to add and complete it, which will serve as an example of integration, with the OP-
UA Security scheme as base of the integration in ICS. A use case for OPC-UA will be explained for
the last release.

Integration with other i4Q solution and pilots is also planned to show and describe in here for
the last release. We identified collaboration opportunities between the i4Q Trusted Network
(i4QTN), i4Q Block Chain (i4QBC) module and i4Q Message Broker (i4QMB) service, but they are in a
very early stage of integration, therefore the evolution of the integration will be described in the
next release.

3.3 History

Version Release date New features

V0.0.1 10/02/2022 EJBCA PKI manager installation in CentOS virtual machine

V0.0.2 14/02/2022 HSM cardContact installation and configuration

V0.0.3 14/02/2022 HSM cardContact integrated and added in EJBCA PKI

V0.0.4 07/03/2022 Creation of the first x509 certificate in the PKI.

V0.0.5 22/03/2022 Creation of crypto tokens in PKI using CardContact HSM

V0.0.6 29/03/2022 Creation of CA in PKI

V0.0.7 29/03/2022 Creation of the first x509 certificate in the PKI.

V0.0.8 03/05/2022 Compact installation guide. Virtualbox to distribute.

Table 1. History

26 i4Q D3.6 – IIoT Security Handler

4. Conclusions
The i4Q IIoT Security Handler (i4QSH) aims to provide trust across the ICS architecture using a
hardware secure module as trust anchor point. Once the trust is distributed, the software enables
the mechanisms to expose cryptography operations that other i4Q Solutions can consume,
adjusting security and safety policies at different levels to ensure trustability and privacy of data
by means of the usage of a PKI infrastructure.

Installation and configuration guidelines for a PKI solution are described to facilitate the onsite
inclusion and integration in the i4Q ICS ecosystem.

27 i4Q D3.6 – IIoT Security Handler

References
[1] O. Andreeva et al., “Industrial control systems vulnerabilities statistics”, Kaspersky Lab, Report,
2016 [Online]. Available:
https://www.researchgate.net/profile/Sergey_Gordeychik/publication/337732465_INDUSTRIAL_
CONTROL_SYSTEMS_VULNERABILITIES_STATISTICS/links/5de7842e92851c8364600e7e/INDUS
TRIAL-CONTROL-SYSTEMS-VULNERABILITIES-STATISTICS.pdf

[2] https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-
statistics.

[3] M. Kravchik and A. Shabtai, “Detecting Cyber Attacks in Industrial Control Systems Using
Convolutional Neural Networks”, Proceedings of the 2018 Workshop on Cyber-Physical Systems
Security and PrivaCy. 2018 [Online]. Available: http://dx.doi.org/10.1145/3264888.3264896

[4] Keith Stouffer (NIST), Suzanne Lightman (NIST), Victoria Pillitteri (NIST), Marshall Abrams
(MITRE), Adam Hahn (WSU), “Guide to Industrial Control Systems (ICS) Security” 2015 [Online].
Available: https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final

[5] “Communication network dependencies for ICS/SCADA Systems”, 19-Dec-2016. [Online].
Available: https://www.enisa.europa.eu/publications/ics-scada-dependencies.

[6] S. Qayyum, S. Ashraf, M. Shafique, and S. Waheed, “Hardware devices security, their
vulnerabilities and solutions”, in 2018 15th International Bhurban Conference on Applied
Sciences and Technology (IBCAST), 2018, pp. 439–445, doi: 10.1109/IBCAST.2018.8312261
[Online]. Available: http://dx.doi.org/10.1109/IBCAST.2018.8312261

[7] https://en.wikipedia.org/wiki/OPC_Unified_Architecture#UA_security

[8] https://reference.opcfoundation.org/v104/Core/docs/Part2/8/

[9] https://reference.opcfoundation.org/v104/Core/docs/Part2/8.1.3/

[10] https://www.smartcard-hsm.com/features.html#usbstick

[11] EJBCA® Community Open Source PKI Software. https://www.ejbca.org/

[12] https://doc.primekey.com/ejbca743/ejbca-installation

https://www.researchgate.net/profile/Sergey_Gordeychik/publication/337732465_INDUSTRIAL_CONTROL_SYSTEMS_VULNERABILITIES_STATISTICS/links/5de7842e92851c8364600e7e/INDUSTRIAL-CONTROL-SYSTEMS-VULNERABILITIES-STATISTICS.pdf
https://www.researchgate.net/profile/Sergey_Gordeychik/publication/337732465_INDUSTRIAL_CONTROL_SYSTEMS_VULNERABILITIES_STATISTICS/links/5de7842e92851c8364600e7e/INDUSTRIAL-CONTROL-SYSTEMS-VULNERABILITIES-STATISTICS.pdf
https://www.researchgate.net/profile/Sergey_Gordeychik/publication/337732465_INDUSTRIAL_CONTROL_SYSTEMS_VULNERABILITIES_STATISTICS/links/5de7842e92851c8364600e7e/INDUSTRIAL-CONTROL-SYSTEMS-VULNERABILITIES-STATISTICS.pdf
http://dx.doi.org/10.1109/IBCAST.2018.8312261
https://reference.opcfoundation.org/v104/Core/docs/Part2/8.1.3/
https://www.ejbca.org/
https://doc.primekey.com/ejbca743/ejbca-installation

28 i4Q D3.6 – IIoT Security Handler

Appendix I
The PDF version of the i4Q IIoT Security Handler web documentation can be accessed online at:
http://i4q.upv.es/6_i4Q_SH/index.html

i4Q Solution IIoT Security Handler (i4QSH)

General Description

This document presents general description and technical application i4Q IIoT Security Handler
(i4QSH) which is a proposal of an implementation of a Public Key Infrastructure (PKI) to provide
trust in the i4Q Industrial Control System (ICS) ecosystem.

An ICS is a collection of control systems that work together to achieve a certain industrial goal.
The integration of operational technology (OT) and information technology (IT) in ICS has boosted
operational and financial efficiency, but it has also opened the door to greater risks, including
system outages and espionage. Today a control system is vulnerable to cyber-attacks in many
ways and control system engineers need to be well aware of subjects such as ICS security and
SCADA security. This document presents a proposal to use X.509 certificates to provide trust in
i4Q ICS ecosystem. This document presents a proposal to use X.509 certificates to provide trust
in i4Q ICS ecosystem.

PKI is used to create a trust chain that allows a person, service, machine, or application to be
authorized, a secure connection to be formed, or the provenance of software or documents to be
validated. This is accomplished through certificates, which a PKI creates, manages, and distributes
while also having the ability to revoke. The public key in a certificate must be kept safe and secret,
and the private key must be kept safe and hidden as well. It’ll have to be stored in a hardware
security module (HSM).

Features
The main aspects considered in i4QSH are as follows:

1. Authentication: The PKI allows trading partners to be identified online through
trustworthy authorities that are in charge of issuing digital certificates and providing
procedures for identifying individuals who hold those certificates on behalf of a company.

2. Privacy: The technique for protecting information is provided by digital certificates.
Messages can be encrypted to reduce the danger of them being intercepted or read by
someone other than the intended receiver while in transit.

3. Integrity: When conducting business over the Internet, a company needs to know that any
transaction conducted or information provided will not be altered or interfered with
during transmission. As a fundamental component, the PKI ensures transaction security.
The recipient of a communication can use PKI to verify that the message is still the same
as it was when it was transmitted.

4. Non-repudiation: As a fundamental component, the PKI ensures transaction security. The
recipient of a communication can use PKI to verify that the message is still the same as it
was when it was transmitted.

http://i4q.upv.es/6_i4Q_SH/index.html

29 i4Q D3.6 – IIoT Security Handler

ScreenShots

Getting HSM information from console

Bootstrapping Ejbca PKI instace from console

http://i4q.upv.es/_images/HSM_info.png
http://i4q.upv.es/_images/starting_ejbca.png

30 i4Q D3.6 – IIoT Security Handler

View of Ejbca and HSM configured to use

View of an i4Q CA certificate

http://i4q.upv.es/_images/ui_ejbca_hsm.png
http://i4q.upv.es/_images/cert_ca.png

31 i4Q D3.6 – IIoT Security Handler

Commercial Information

Authors

Company Website Logo

IKERLAN www.ikerlan.es/en/

Associated i4Q Solutions

Required

Currently, it can operate without the need for another i4Q solution.

Optional

None. However, the i4QSH is expected to be used with almost any other i4Q solution in the pilots,
where security is need providing SSL certificates to trust data and communications, for example
in the i4QDR solution.

System Requirements

1. Windows or Linux powered PC
2. VMware or VirtualBox CentOS image
3. CardContact HSM.

• CentOS requirements:

o 4 GB Ram
o 2 CPU
o 64-bit operating system
o Hardware virtualisation support

Additionally, it requires the following dependencies to be already installed:

1. OpenSC, required security library to interact with HSM.
:> wget http://mirror.centos.org/centos/7/os/x86_64/Packages/opensc-0.19.0-
3.el7.x86_64.rpm
2. EJBCA, PKI software administrator.

:>
wget https://sourceforge.net/projects/ejbca/files/ejbca6/ejbca_6_15_2_6/ejbca_ce_6_15_
2_6.zip

http://mirror.centos.org/centos/7/os/x86_64/Packages/opensc-0.19.0-3.el7.x86_64.rpm
http://mirror.centos.org/centos/7/os/x86_64/Packages/opensc-0.19.0-3.el7.x86_64.rpm
https://sourceforge.net/projects/ejbca/files/ejbca6/ejbca_6_15_2_6/ejbca_ce_6_15_2_6.zip
https://sourceforge.net/projects/ejbca/files/ejbca6/ejbca_6_15_2_6/ejbca_ce_6_15_2_6.zip

32 i4Q D3.6 – IIoT Security Handler

API Specification

Since i4QSH is expected to be used or integrated with other i4Q solutions, the plan is to use Web
Service API as a mechanism to interact with the i4QSH. This WS API offers the following endpoints:

https://HOST-IP:8443/ejbca/ejbcaws/ejbcaws?wsdl

Providing links to access to the required functions to interact with PKI.

WS-API functions provided by PKI

Installation Guidelines

Resource Location

Last release (v.1.0.0) Website

Installation CardContact HSM

Latest installation information at:

https://www.smartcard-hsm.com/opensource.html#starterkit

https://host-ip:8443/ejbca/ejbcaws/ejbcaws?wsdl
http://i4q.upv.es:8085/
https://www.smartcard-hsm.com/opensource.html#starterkit
http://i4q.upv.es/_images/ws_functions.png

33 i4Q D3.6 – IIoT Security Handler

Command to initial installation of HSM: sc-hsm-tool:

[root@localhost ~]# sc-hsm-tool –initialize –so-pin xxxxxx –pin yyyyyy

Installation EJBCA

Latest installation information at:

https://www.ejbca.org/documentation/

Need to adapt web.properties file in ejbca/conf to use CardContact HSM:

• cryptotoken.p11.lib.60.name=OpenSC
• cryptotoken.p11.lib.60.file=/usr/lib64/opensc-pkcs11.so

User Manual

How to use

The resulting solution is based on the external program Ejbca to configure and manage the PKI
infrastructure. Latest guidelines in how to operate will be find
at https://download.primekey.com/docs

WS-API

The SOAP API is compatible with all development languages that can handle SOAP messages.
This includes programming languages such as Java, C# and PHP. Client stubs are generated from
the WSDL file, which includes all information to use the WS API. The WSDL can be accessed from
your installed EJBCA at https://HOST-IP:8443/ejbca/ejbcaws/ejbcaws?wsdl.

mailto:root%40localhost
https://www.ejbca.org/documentation/
https://download.primekey.com/docs
https://host-ip:8443/ejbca/ejbcaws/ejbcaws?wsdl

