

i4Q has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 958205.

D3.3 – Blockchain
Traceability of
Data

WP3 – BUILD: Manufacturing
Data Quality

1 i4Q D3.3 – Blockchain Traceability of Data

Document Information

GRANT AGREEMENT
NUMBER

958205 ACRONYM i4Q

FULL TITLE Industrial Data Services for Quality Control in Smart Manufacturing

START DATE 01-01-2021 DURATION 36 months

PROJECT URL https://www.i4q-project.eu/

DELIVERABLE D3.3 – Blockchain Traceability of Data

WORK PACKAGE WP3 – BUILD: Manufacturing Data Quality

DATE OF DELIVERY CONTRACTUAL June 2022 ACTUAL June 2022

NATURE Report DISSEMINATION LEVEL Public

LEAD BENEFICIARY IBM

RESPONSIBLE AUTHOR Yoav Tock (IBM)

CONTRIBUTIONS FROM

TARGET AUDIENCE
1) i4Q Project partners; 2) industrial community; 3) other H2020
funded projects; 4) scientific community

DELIVERABLE
CONTEXT/
DEPENDENCIES

This document is D3.3. Its relationship to other documents is as
follows:

• D1.1 Project Vision Guide Document: vision of the i4QBC
solution.

• D1.4 Requirements Analysis and Functional Specification:
requirements for the i4QBC solution.

• D1.9 Requirements Analysis and Functional Specification v2:
requirements for the i4QBC solution.

• D2.7 i4Q Reference Architecture and Viewpoints Analysis v2:
the role of the i4QBC solution in the reference architecture.

• D3.11 i4Q Blockchain Traceability of Data v2: update of this
deliverable

EXTERNAL ANNEXES/
SUPPORTING
DOCUMENTS

None

READING NOTES None

https://www.i4q-project.eu/

2 i4Q D3.3 – Blockchain Traceability of Data

ABSTRACT

The Blockchain Traceability of Data (i4QBC) solution aims to enhance
the level of trust that different solutions and components can place
on data. It provides services of immobility and finality of data, serving
as the source of truth, enabling trust in data by providing the
possibility for full provenance and audit trail of data stored. This
deliverable explains the design choices for selection of Hyperledger
Orion as the i4Q Blockchain Infrastructure. Hyperledger Orion is a
centralised, trusted blockchain database that provides tamper-
evidence, provenance, data lineage, authenticity, and non-
repudiation through data centric Application Programming Interfaces.
This document presents Hyperledger Orion and includes detailed
deployment instructions. The code is available at the project’s
repository, so a blockchain database server is ready for use by the i4Q
ecosystem.

3 i4Q D3.3 – Blockchain Traceability of Data

Document History

VERSION ISSUE DATE STAGE DESCRIPTION CONTRIBUTOR
0.1 10-May-2022 ToC Table of Contents available IBM

1.1 27-May-2022 1st Draft First Version Technical
Deliverable

IBM

1.2 08-Jun-2022 Internal
review

Review and comments CERTH, UPV

1.3 22-Jun-2022 2nd Draft Second Version Technical
Deliverable after revision

IBM

1.4 30-Jun-2022 Final Doc Final quality check and issue
of final document

CERTH

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible
for any use that may be made of the information it contains.

Copyright message

© i4Q Consortium, 2022
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

4 i4Q D3.3 – Blockchain Traceability of Data

TABLE OF CONTENTS
Executive summary .. 7

Document structure ... 8

1. General Description ... 9

1.1 Overview .. 9

1.2 Blockchain overview... 9

1.2.1 Main concepts ... 9

1.2.2 Blockchain technologies .. 10

1.3 Related work: Hyperledger Fabric vs. Blockchain DB .. 11

1.3.1 Introduction to Hyperledger Fabric .. 11

1.3.2 Introduction to Blockchain Database .. 12

1.3.3 A blockchain platform for i4Q .. 12

1.4 Features .. 13

2. Technical Specifications .. 15

2.1 Blockchain properties .. 15

2.2 High level architecture .. 15

2.3 APIs .. 17

2.3.1 Queries ... 17

2.3.1.1 Querying the cluster configuration ... 17

2.3.1.2 Querying the user information ... 18

2.3.1.3 Checking the database existence .. 18

2.3.1.4 Querying a block header ... 18

2.3.1.5 Provenance queries .. 19

2.3.2 Transactions ... 19

2.3.2.1 Database administration transaction.. 19

2.3.2.2 User administration transaction ... 22

2.3.2.3 Data Transaction ... 26

2.4 Deployment ... 30

2.4.1.1 Prerequisites ... 30

2.4.1.2 Build .. 30

2.4.1.3 Build and start BCDB node inside Docker ... 30

2.5 Reference Architecture Diagram .. 31

5 i4Q D3.3 – Blockchain Traceability of Data

3. Implementation Status .. 33

3.1 Current implementation .. 33

3.1.1 Solution features mapping with user requirements ... 33

3.1.2 The Hyperledger Orion server .. 34

3.1.3 The Hyperledger Orion client SDK ... 34

3.1.4 Demonstration ... 34

3.2 Next developments ... 35

3.3 History ... 36

4. Conclusions ... 37

References .. 38

Appendix ... 39

LIST OF FIGURES
Figure 1. Data structure of a blockchain. ... 9
Figure 2. Transaction execution flow of Hyperledger Fabric and Blockchain DB. 13
Figure 3. High level architecture of BCDB (Source: https://github.com/hyperledger-labs/orion-
server). ... 16
Figure 4. i4Q RA mapping with i4Q-BC .. 32
Figure 5. Changing machine configuration and conducting an audit. ... 35

6 i4Q D3.3 – Blockchain Traceability of Data

ABBREVIATIONS/ACRONYMS
ACL Access Control List

AI Artificial Intelligence

API Application Programming Interface

BC Blockchain

BCDB Blockchain Database

BFT Byzantine Fault Tolerance

CA Certification Authority

DB Database

DBMS Database Management System

GA Grant Agreement

GDPR General Data Protection Regulation

HLF Hyperledger Fabric

IPR Intellectual Property Rights

JSON JavaScript Object Notation

MVP Minimum Viable Product

PoW Proof of Work

RA Reference Architecture

REST Representational State Transfer

RO Read Only (access)

RW Read and Write (access)

SDK Software Development Kit

TX Transaction

UC Use Case

WP Work Package

7 i4Q D3.3 – Blockchain Traceability of Data

Executive summary
The purpose of this document is to specify the blockchain platform as a first step towards making
use of blockchain capabilities within the i4Q project. It encapsulates the initial activities and
starting point of Task 3.2 – “Manufacturing Data Trustiness and Traceability”. The content of this
report takes into account the results of D2.7 [5], which is the result of multiple tasks from WP1 &
WP2 as reported therein.

The Blockchain Traceability of Data (i4QBC) solution aims to enhance the level of trust that
different solutions and components can place on data. Thus, it shall serve as one of the
cornerstones of data storage services to be consumed by different solutions. This solution shall
provide services of immobility and finality of data, serving as the source of truth, enabling trust
in data by providing the possibility for full provenance and audit trail of data stored. Thus, the
main functionality offered by this solution is comprised of Data trust traceability, enabling a full
audit trail of assets and data.

This deliverable explains the design choices for selection of Hyperledger Orion instead of
Hyperledger Fabric as the i4Q Blockchain Infrastructure. Hyperledger Orion is a centralised,
trusted blockchain database that provides tamper-evidence, provenance, data lineage,
authenticity, and non-repudiation through data centric Application Programming Interfaces, with
transactional semantics and very simple well-known programming model. As this deliverable
shows, it has the right fit to the project’s requirements, and has advantages over the initially
proposed Hyperledger Fabric blockchain platform. In addition, this document includes detailed
deployment instructions, and the code is available at the project’s repository, so a blockchain
database server is ready for use by the i4Q ecosystem.

8 i4Q D3.3 – Blockchain Traceability of Data

Document structure
Section 1: Contains a general description of the i4QBC, providing an overview and the list of
features. It is addressed to final users of the i4Q Solution.

Section 2: Contains the technical specifications of the i4QBC, providing an overview and its
architecture diagram. It is addressed to software developers.

Section 3: Details the implementation status of the i4QBC, explaining the current status, next steps
and summarizing the implementation history.

Section 4: Provides the conclusions.

APPENDIX I: Provides the PDF version of the i4Q Blockchain Traceability of Data web
documentation, which can be accessed online at: http://i4q.upv.es/3_i4Q_BC/index.html

http://i4q.upv.es/3_i4Q_BC/index.html

9 i4Q D3.3 – Blockchain Traceability of Data

1. General Description

1.1 Overview

Blockchain (BC) technology enables data traceability, which is a capability provided by i4QBC.
Blockchain provides the underlying technology for ensuring immutability, finality, and
provenance contributing to non-repudiation of the stored state. i4QBC provides primitives within
or on top of the base blockchain infrastructure to provide these capabilities in a smart
manufacturing environment, for storing and querying manufacturing related data, configuration
changes decisions and AI accountability.

This section provides the background necessary to understand BC technologies, and introduces
the main concepts and constructs, followed by the introduction of BCDB, which is the BC solution
used in the i4Q project. Eventually, the section presents a comparison with Hyperledger Fabric,
which was a candidate for the BC platform for the i4Q project.

1.2 Blockchain overview

1.2.1 Main concepts
A BC can be defined as an immutable ledger for recording transactions, representing a single
source of truth for business interactions. The ledger is an append-only transactions log, where
each transaction represents a state change. Transactions are grouped into blocks and a hash chain
is built over the blocks, i.e., each block stores also the hash of the previous block (see Figure 1).

Figure 1. Data structure of a blockchain.

The BC structure is maintained in a way which ensures provenance, immutability, and finality of the
transactions. Provenance is the capability to trace the source, and all the subsequent changes that
were applied to an entity. Immutability means that a transaction that was recorded in the BC
cannot be altered in any way (or at least without parties being able to identify an altered piece of

10 i4Q D3.3 – Blockchain Traceability of Data

information). Finally, the finality property ensures that once a transaction was recorded in the BC
it cannot be removed.

1.2.2 Blockchain technologies
A BC can be maintained by a distributed network of mutually untrusting peers. Every peer
maintains a copy of the ledger. The peers execute a consensus protocol to validate transactions,
group them into blocks, and build a hash chain over the blocks. This process forms the ledger by
ordering the transactions, as is necessary for consistency.

In a public or permissionless BC, such as Bitcoin, anyone can participate without a specific
identity. Public BCs typically involve a native cryptocurrency and often use consensus based on
“proof of work” (PoW) and economic incentives. Consensus refers to a fundamental problem in
distributed computing, achieving overall system reliability in the presence of faulty or malicious
processes. This often requires coordinating processes to agree on some data value that is needed
during computation. Consensus protocols in BC technologies are a set of rules accepted by all
participants, which translate into executable code, for block generation, and the verification,
validation, and distribution of transactions to all parties.

Permissioned BCs, as opposed to permissionless ones, run a BC among a set of known, identified
participants. A permissioned BC provides a way to secure the interactions among a group of
entities that have a common goal, but which do not fully trust each other, such as businesses that
exchange funds, goods, or information. By relying on the identities of the peers, a permissioned
BC can use traditional Byzantine Fault Tolerant (BFT) consensus.

BCs may execute arbitrary, programmable transaction logic in the form of smart contracts, as
exemplified by Ethereum. They are clauses and conditions that can be implemented by translating
the business logic into code operating on BC data. Smart contracts are deployed within the BC
network so that their content cannot be modified. Scripts in Bitcoin were a predecessor of the
concept. A smart contract functions as a trusted distributed application and gains its security from
the BC and the underlying consensus among the peers.

Cryptographic tools

A set of cryptographic tools, such as encryption, signatures, and access control technique, are
utilised by BC technologies to allow transactions to only be registered by authorised parties.

Hash functions: are functions that allow an entity to encrypt any input data, generating a hash,
which is encrypted text of a fixed length. It has several properties:

• Obtaining the original data from the generated hash is practically impossible.
• The same output hash is always obtained for a specific input.
• Any modification of the input data generates with a high probability a completely different

hash.

These characteristics allow the verification of the integrity of a message and guarantee that it has
not been tampered with.

Asymmetric Cryptography: also known as public key cryptography. It allows secure communication
between two parties through the use of private and public keys. The private key is kept secret by

11 i4Q D3.3 – Blockchain Traceability of Data

the owner of the key pair and the public key is visible to all parties. A message encrypted with
the private key can only be decrypted with the public key and vice versa.

Digital signature: a combination of the two previous methods, consists of applying a hash function
on the data set that is to be exchanged, and encrypting the resulting hash with a private key. A
signature is obtained and attached to the data submission.

1.3 Related work: Hyperledger Fabric vs. Blockchain DB

1.3.1 Introduction to Hyperledger Fabric
Hyperledger Fabric (HLF) is an open-source project of a permissioned BC infrastructure with
modular architecture, allowing managing consensus and trust among different entities [1].
At a high level, the system is comprised of peer servers, potentially belonging to different
organisations, which replicate and validate the blocks creating the transactions comprising the
ledger; an ordering service which determines the total order of the transactions and publishes the
corresponding blocks to be picked up by the peer processes; and a client that interacts with the
system programmatically for invoking transactions or queries. A configurable sub-set of the peers
is involved also in endorsing transactions submitted to the system; supporting consensus for
inserted transactions. All entities hold verifiable security certificates issued by a Certification
Authority (CA) component.

Underlying a HLF network (as in most permissioned networks) is the notion of a consortium, which
is a group of organisations that agreed to set up a BC network between them, establishing the
governance body and rules. Most central organisations within a BC network will deploy (or use) a
CA on their behalf, and will contribute peer(s), which are server components that endorse,
validate, and hold replicas of the shared ledger. In addition, an ordering service needs to be set
up by the organisations, to order the transactions, cut blocks and make them available to the
peers.

To bootstrap a network, there needs to be an ordering service, peer processes need to be
established on behalf of organisations, and the appropriate cryptographic material should be
distributed (including the certificates required to participate in the network) to each entity. Once
the backbone is in place, chaincodes (smart contracts in HLF) can be installed and instantiated. A
chaincode needs to be installed on each peer, which may endorse transactions for that chaincode
(endorsing peers are the only ones that execute the chaincode). The chaincode needs to be
instantiated on one of the peers, to create the bond between the chaincode and the channel, and
run the initialisation method specific to that chaincode.

Once the chaincode is in place, users can start invoking transactions and queries on the BC
channel. By using a client, the user assembles a transaction and sends it to the endorsing peers.
Endorsing peers’ policy is determined per chaincode, and establishes the identity of potential
endorsers and the conditions that must be satisfied for a transaction to be approved. Once the
client has received responses from the endorsing peers, it can evaluate whether the transaction
abides by the endorsement policy and can thus go through and be sent to the ordering service to
be included in a future block, or whether it needs to be dropped. Endorsing peers are the only
ones that actually run the chaincode (in a simulating mode), and return the corresponding read
and write sets of the transaction, namely the keys and versions of variables that were read or

12 i4Q D3.3 – Blockchain Traceability of Data

written by the simulated execution of the chaincode. Endorsed transactions are then sent, along
with the corresponding read and write set, to the ordering service. The ordering service in turn
orders incoming transactions, cuts blocks, and makes the blocks available to the peers. The peers
in turn obtain a new block, validate the transactions in it, and apply the write set for the
transactions that have been determined to be valid.

1.3.2 Introduction to Blockchain Database
BCDB, by Gartner’s definition, is a ledger-based Database Management System (DBMS)
implementation. Ledger DBMSs, also known as BCDBs, is a spectrum of work which takes any
well-known DB technology and then extends it by adding BC properties to it. The main goal of
BCDB is to increase the adoption rate by providing immutable ledger features as an extension to
existing DB technology and simplify the overall development, deployment, and usage. Further,
these BCDBs leverage the rich features and transactional processing capability already built into
DBs over decades of research and development, and enable easy integration with the legacy
system. The millions of developers having experience in DB technology can easily build BC
applications with ledger DBMSs. By 2021, Gartner’s estimation is that most permissioned BC
platforms will be replaced by ledger DBMS products [2].

BCDB is a key-value/document replicated DB that provides immutable ledger properties such as
tamper evident, non-repudiation, and provenance queries. In addition, BCDB provides DBMS
features such as serialisation isolation level, crypto-based authentication, confidentiality and
access control, and high availability using replication. However, BCDB does not support the
decentralisation of trust, as it is a centralised DB, nor smart contracts, that can be simulated by
special transactions. Therefore, BCDB is not a Decentralised Distributed Ledger but rather a
Ledger DBMS.

BCDB is an open-source project maintained by IBM1. It was recently accepted to be part of the
Hyperledger open-source community2, that is under the Linux Foundation3, and the new BCDB
project’s name has now changed to Hyperledger Orion (although still referred to as BCDB
throughout this document).

1.3.3 A blockchain platform for i4Q
In the i4Q ecosystem one needs to be granted permissions in order to access the platform, and
everyone is required to specify their true identity. However, this does not contradict the privacy
and anonymisation also required by i4Q. Hence, the permissioned setting is suitable for the i4Q
scenario.

While different i4Q users do not necessarily have to trust each other, the i4QBC as an entity is in
fact trusted by all platform users. Therefore, the i4Q ecosystem can operate under the centralised
trust assumption.

1 Blockchain DB: https://github.com/hyperledger-labs/orion-server
2 Hyperledger: https://www.hyperledger.org/
3 The Linux Foundation: https://www.linuxfoundation.org/

https://github.com/hyperledger-labs/orion-server
https://www.hyperledger.org/
https://www.linuxfoundation.org/

13 i4Q D3.3 – Blockchain Traceability of Data

BC-based technology can help improve data trust in centralised ecosystems. While efficient
classical DBs do not provide out of the box capabilities needed to guarantee and prove required
trust features, and the use of decentralised (BC-based) ledger technologies for centralised systems
is difficult, inefficient, and costly, an extension of classical DB with BC-based features can be used
to efficiently address trust requirements in such systems.

The original permissioned BC platform considered for i4Q project was Hyperledger Fabric.
However, after careful consideration, discussing alternative approaches with all relevant i4Q
partners, and a better understanding of the different use case BC-specific requirements, we
arrived at the conclusion that the BCDB technology is most suitable for functioning as the project’s
BC platform. Both are open-source projects, maintained mostly by IBM, and part of the
Hyperledger open-source community. Nevertheless, BCDB has a few key benefits over
Hyperledger Fabric that could serve the i4Q project.

Foremost is that BCDB is a centralised trusted ledger, as opposed to the Hyperledger Fabric
decentralised trust. BCDB is specifically designed to efficiently address ecosystems where there
is a trusted party such as a cloud provider, government or legal bodies, or any other key
organisation, while the other participants in the ecosystem do not have to trust each other.

In a centralised trust eco-system, there is no need to create a consortium to maintain a
decentralised network like Hyperledger Fabric, but rather i4QBC will maintain a BCDB, which
significantly reduces associated operational and maintenance costs.

Moreover, BCDB has more non-functional benefits such as easy installation and administration,
standard programming model, and significantly higher efficiency. As an example, the different
transaction execution flows are illustrated in the diagram (Figure 2) below. While in Hyperledger
Fabric, transaction execution involves many different processes and a few rounds of
communication, BCDB offers a straightforward approach.

Figure 2. Transaction execution flow of Hyperledger Fabric and Blockchain DB.

1.4 Features

The main features provided by this solution include:

14 i4Q D3.3 – Blockchain Traceability of Data

• A replicated key-value database with transactional APIs. A data centric API provides a
familiar and easy to use programming paradigm, which reduces complexity and cost
compared to traditional blockchain platforms. A cluster of servers provide a fault tolerant
& highly available solution.

• All stored data is bound with cryptographic data structures (e.g.: a hash-chain), which
ensures immutability and tamper evidence.

• The use of digital signatures by clients and servers, for both requests, responses, and
stored data, provides authentication as well as non-repudiation.

• Fine-grain privacy is achieved using key-level access control, which is enforced by the
digital signatures provided by users.

• Multi-party transactions, in which more than one user is required to sign a transaction to
make it valid, are supported.

• All historical changes to the data are maintained within the ledger as well as in a graph
structure. The solution allows the user to execute provenance queries on those historical
changes to understand the lineage of each data item.

15 i4Q D3.3 – Blockchain Traceability of Data

2. Technical Specifications
In this section we describe the BCDB, its properties and trust assumptions, the high-level
architecture, and detail the APIs. Finally, this chapter includes the deployment instructions for a
BCDB server. More details are given on the BCDB project’s website
(https://github.com/hyperledger-labs/orion-server), and as previously mentioned, the project is
now called Hyperledger Orion. As discussed in previous chapters, BCDB will serve as the BC
platform of the i4Q project.

2.1 Blockchain properties

BCDB is a key-value/document DB with certain BC properties such as:

• Tamper Evident: Data cannot be tampered with, without it going unnoticed. At any point
in time, a user can request the DB to provide proof for an existence of a transaction or
data and verify the same to ensure data integrity.

• Non-Repudiation: A user who submitted a transaction to make changes to data cannot
deny submitting the transaction later.

• Crypto-based Authentication: A user that submitted a query or transaction is always
authenticated using digital signature.

• Confidentiality and Access Control: Each data item can have an Access Control List (ACL)
to dictate which users can read from it and which users can write to it. Each user needs to
authenticate themselves by providing their digital signature to read or write to data.
Depending on the access rule defined for data, sometimes more than one user needs to
authenticate themselves together to read or write to data.

• Serialisation Isolation Level: It ensures a safe and consistent transaction execution.
• Provenance Queries: All historical changes to the data are maintained separately in a

persisted graph data structure so that a user can execute query on those historical
changes to understand the lineage of each data item.

BCDB DOES NOT have the following two BC properties:

• Smart-Contracts: A set of functions that manage data on the BC ledger. Transactions are
invocations of one or more smart contract's functions.

• Decentralisation of Trust: A permissioned setup of known but untrusted organisations,
each operating their own independent DB nodes, but communicate together to form a BC
network. As one node cannot trust the execution results of another node, ordering
transaction must be done with a BFT protocol and all transactions need to be
independently executed on all nodes.

2.2 High level architecture

Figure 3 presents the high-level architecture of BCDB. BCDB stores and manages the following
five data elements:

1. Users: Storage of users' credentials such as digital certificate and their privileges. Only
these users can access the DB.

https://github.com/hyperledger-labs/orion-server

16 i4Q D3.3 – Blockchain Traceability of Data

2. Key-Value Pairs: Storage of all current/active key-value pairs committed by users of the
DB.

3. Historical Key-Value Pairs: Storage of all past/inactive key-value pairs using a graph data
structure with additional metadata such as the user who modified the key-value pair, all
previous and next values of the key, transactions which have read or written to the key-
value pair, etc. It helps to provide a complete data lineage.

4. Authenticated Data Structure: Storage of Merkle Patricia Tree4, where leaf node is nothing
but a key-value pair. It helps in creating proofs for the existence of a key-value pair.

5. Hash chain of blocks: Storage of cryptographically linked blocks, where each block holds
a set of transactions submitted by the user along with its commit status, summary of state
changes in the form of Merkle Patricia's Root hash, etc. It helps in creating a proof for the
existence of a block or a transaction.

Figure 3. High level architecture of BCDB (Source: https://github.com/hyperledger-labs/orion-server).

The users of the DB can query these five data elements provided that they have the required
privileges and also can perform transactions to modify active key-value pairs. When a user submits
a transaction, that user receives a transaction receipt from the DB after the commit of a block that

4 Merkle Patricia Tree: https://eth.wiki/fundamentals/patricia-tree

https://github.com/hyperledger-labs/orion-server
https://eth.wiki/fundamentals/patricia-tree

17 i4Q D3.3 – Blockchain Traceability of Data

includes the transaction. The user can then store the receipt locally for performing client-side
verification of proof of existence of a key-value pair or a transaction or a block.

2.3 APIs

REST APIs are supported to enable users to interact with the BCDB node. Every user who issues a
GET or POST request must be authenticated cryptographically through digital signature. To add a
digital signature on the request payload, a utility called signer is provided.

Note that a Software Development Kit (SDK) built using Golang (GO programming language) is
provided, which simplifies the development by hiding much of the details such as expected data
format of the request payload, signing the query and transaction, verifying the digital signature
of the DB node on the response, etc. However, one can choose to use the signer utility along with
the cURL to perform queries and submit transactions.

2.3.1 Queries
For each GET request, one needs to set two custom headers called UserID and Signature which
will be included in the request while sending HTTP to the BCDB node.

As every user who issues a GET or POST request must be authenticated cryptographically through
digital signature, the submitting user must compute a signature on the query data or transaction
data and set the signature in the Signature header. The signer utility is used to compute the
required digital signature.

Queries can be used to fetch data stored/managed by the DB.

2.3.1.1 Querying the cluster configuration
The cluster configuration includes node, admin, and consensus configuration (used for
replication). When the BCDB server boots up for the first time, it reads nodes, admins, and
consensus configuration present in the “config.yml” configuration file, and creates a genesis
block. The user can query the current cluster configuration by issuing a GET request on
the /config/tx endpoint.

The REST endpoint for querying the configuration is /config/tx, and it does not require any
inputs or additional parameters from the user. Hence, the user needs to sign only their user id and
set the signature in the Signature header.

Specifically, the user needs to sign the following JavaScript Object Notation (JSON) data:

{"user_id":"<userID>"}

where <userID> is the ID of the submitting user, who is registered in the BCDB node.

In the following example, admin user is the one who submits a request to the server. Hence, the
admin's private key is used to sign the {"user_id":"admin"}, as shown below:

./bin/signer -privatekey=deployment/sample/crypto/admin/admin.key -

data='{"user_i

d":"admin"}'

18 i4Q D3.3 – Blockchain Traceability of Data

The above command would produce a digital signature and prints it as base64 encoded string as
shown below:

MEUCIQCMEdLgfFEOF+vgXLwbeOdUUWnGB5HH2ULkoz15jlk5DgIgbWXuoyqD4szob78hZYiau

9LPdJLLqP3bAu7iV98BcW0=

Once the signature is computed, a GET request can be issued using the following cURL command
by setting the above signature string in the Signature header:

curl \

 -H "Content-Type: application/json" \

 -H "UserID: admin" \

 -H "Signature:

MEUCIQCMEdLgfFEOF+vgXLwbeOdUUWnGB5HH2ULkoz15jlk5DgIgbWXuoyqD4sz

ob78hZYiau9LPdJLLqP3bAu7iV98BcW0=" \

 -X GET http://127.0.0.1:6001/config/tx | jq .

2.3.1.2 Querying the user information
One user can query information about another user or themselves. If the access control is defined
for the user entry, it would be enforced during the query. A user information can be retrieved by
issuing a GET request on the /user/{userid} endpoint, where {userid} should be replaced with the
ID of the user whom information needs to be fetched.

Here, the submitting user needs to sign:

{"user_id":"<submitting_user_id>","target_user_id":"<target_user_id"}

where <submitting_user_id> denotes the ID of the user who is submitting the query, and
<target_user_id> denotes the ID of the user of whom information needs to be fetched.

2.3.1.3 Checking the database existence
To check whether a DB exists/has been created, the user can issue a GET request on
the /db/{dbname} endpoint, where {dbname} should be replaced with the DB name for which
the user needs to perform this check.

For this query, the submitting user needs to sign:

{"user_id":"<userid>","db_name":"<dbname>"}

where <userid> denotes the submitting user and the <dbname> denotes the name of the DB for
which the user performs the existence check.

2.3.1.4 Querying a block header
A block is a collection of ordered transactions in BCDB. The header object within a block holds
the block number, root hash of the transaction Merkle tree, root hash of the state Merkle tree, and
validation information.

19 i4Q D3.3 – Blockchain Traceability of Data

To query a block header of a given block, the user can issue a GET request on the
/ledger/block/{blocknumber} endpoint, where {blocknumber} denotes the block whose header
needs to be fetched.

The submitting user needs to sign:

{"user_id":"<userid>","block_number":<blocknumber>}

where the <userid> denotes the id of the user who is submitting the query, and <blocknumber>
denotes the number of the block whose header needs to be fetched.

2.3.1.5 Provenance queries
The provenance API gives the user access to the following BCDB data:

• The history of values for a given key, in different views and directions;
• Information about which users accessed or modified a specific piece of data;
• Information, including history, about the data items accessed by a given user;
• A history of user’s transactions.

Usually, provenance queries are used to investigate changes of some values over time. For
example, by sending GET /provenance/data/history/{dbname}/{key}, changes of a
specific key over time can be followed. As mentioned above, BCDB supports multiple types of
provenance queries.

2.3.2 Transactions

2.3.2.1 Database administration transaction
To create or delete a DB, one needs to submit a DB administration transaction.

When the DB node boots up for the first time, it would create a default DB called bdb and 3 system
DBs named _users, _dbs, and _config. The bdb DB can be used to submit data transactions,
whereas system DBs are internal to the BCDB server. The user cannot directly read or write to the
system DBs.

To create or delete user DBs, the user needs to issue a:

POST /db/tx {txPayload}

where txPayload contains information about the DB to be created and deleted.

In queries, the UserID and Signature headers had to be set. Whereas in the transaction, both
the UserID and Signature need to be passed as part of the txPayload itself.

One may create a new DB to store data/states by issuing a DB administration transaction. Note
that the DB to be created should not exist in the node. Otherwise, the transaction would fail.

The following cURL command submits a DB administration transaction to create two new DBs
named db1 and db2:

curl \

 -H "Content-Type: application/json" \

20 i4Q D3.3 – Blockchain Traceability of Data

 -H "TxTimeout: 2s" \

 -X POST http://127.0.0.1:6001/db/tx \

 --data '{

 "payload": {

 "user_id": "admin",

 "tx_id": "1b6d6414-9b58-45d0-9723-1f31712add71",

 "create_dbs": [

 "db1",

 "db2"

]

 },

 "signature":

"MEUCIQDidxd5ScjpfYTIfVmSfC874zO0iosSyQUzRprs8j7VXgIgR7QxISwdjgXX5

8TktYXobJHwbCC3F/14rxCg0F8Ma1w="

}'

The payload of the DB administration transaction must contain a "user_id", who submits the
transaction, "tx_id" to uniquely identify this transaction, and a list of DBs to be created in
a "create_dbs" list, as shown in the above cURL command.

As all administrative transactions must be submitted only by the admin, the "user_id" is set
to "admin". As there are two DBs being created, named db1 and db2, the "create_dbs" is set
to ["db1","db2"]. Finally, the signature field contains the admin's signature on the payload,
and is computed using the following command:

./bin/signer -privatekey=deployment/sample/crypto/admin/admin.key -

data='{"user_i

d":"admin","tx_id":"1b6d6414-9b58-45d0-9723-

1f31712add71","create_dbs":["db1","db2"]}'

The output of the above command is set to the signature field in the data.

Once the DB creation transaction gets validated and committed, it would return a receipt to the
transaction submitter. Note that only if the TxTimeout header is set, the submitting user would
receive the transaction receipt. This is because if the TxTimeout is not set, the transaction would
be submitted asynchronously and the DB node returns as soon as it accepts the transaction into
the queue. If the TxTimeout is set, the DB node waits for the specified time. If the transaction is
committed by the specified time, the receipt would be returned.

One can delete an existing DB by issuing a DB administration transaction. Note that the DB to be
deleted should exist in the node. Otherwise, the transaction would be marked invalid.

The following curl command can be used to delete two existing DBs named db1 and db2:

curl \

 -H "Content-Type: application/json" \

 -H "TxTimeout: 2s" \

 -X POST http://127.0.0.1:6001/db/tx \

21 i4Q D3.3 – Blockchain Traceability of Data

 --data '{

 "payload": {

 "user_id": "admin",

 "tx_id": "5c6d6414-3258-45d0-6923-2g31712add82",

 "delete_dbs": [

 "db1",

 "db2"

]

 },

 "signature":

"MEYCIQDC3t4gX4rAXmzqM8359u751vueqaSmYvBEXpCXdafeKAIhAKitFv8r89Rrr

uAlABhjcgeJPIPTEpkcc3tOZ77YmypV"

}'

The payload of the DB administration transaction must contain a "user_id", who submits the
transaction, "tx_id" to uniquely identify this transaction, and a list of DBs to be deleted in
a "delete_dbs" list, as shown in the above cURL command.

As all administrative transactions must be submitted only by the admin, the "user_id" is set
to "admin". As two existing DBs are being deleted, named db1 and db2, the "delete_dbs" is
set to ["db1","db2"].

Within a single transaction, one can create and delete many DBs. The following command submits
a transaction that creates and deletes DBs within a single transaction. This transaction will be
valid only if db3 and db4 do not exist, and db1 and db2 do exist in the cluster.

curl \

 -H "Content-Type: application/json" \

 -H "TxTimeout: 2s" \

 -X POST http://127.0.0.1:6001/db/tx \

 --data '{

 "payload": {

 "user_id": "admin",

 "tx_id": "1b6d6414-9b58-12d5-3733-1f31712add88",

 "create_dbs": [

 "db3",

 "db4"

],

 "delete_dbs": [

 "db1",

 "db2"

]

22 i4Q D3.3 – Blockchain Traceability of Data

 },

 "signature":

"MEUCIAjEtDZ2Q6n6cteisp94ggFXk3JUOXCjhfUlftc80gf6AiEA6IPtezn06SaPW

QLfGhbx8BrFL4BI4iEIu/TDGtcaCKI="

}'

The signature is computed using the following command:

./bin/signer -privatekey=deployment/sample/crypto/admin/admin.key -

data='{"user_i

d":"admin","tx_id":"1b6d6414-9b58-12d5-3733-

1f31712add88","create_dbs":["db3","db4"],"delete_dbs":["db1","db2"]}'

2.3.2.2 User administration transaction
It is possible to create, update and delete users of the DB cluster using the user administration
transaction, by issuing a POST /user/tx {txPayload}. Note that all user administration
transactions must be submitted by the admin.

Adding a user

When the cluster is started for the first time, it will contain only the admin user specified in
“config.yml”. This admin user can add any other user to the cluster. In the below example, the
admin user is adding two users named alice and bob, with certain privileges.

curl \

 -H "Content-Type: application/json" \

 -H "TxTimeout: 10s" \

 -X POST http://127.0.0.1:6001/user/tx \

 --data '{

 "payload": {

 "user_id": "admin",

 "tx_id": "7b6d6414-9b58-45d0-9723-1f31712add01",

 "user_writes": [

 {

 "user": {

 "id": "alice",

 "certificate":

"MIIBsjCCAVigAwIBAgIRAJp7i/UhOnaawHTSd

kzxR1QwCgYIKoZIzj0EAwIwHjEcMBoGA1UEAxMTQ2FyIHJlZ2lzdHJ5IFJvb3RDQTAeFw0yMT

A2MTYxMTEzMjdaFw0yMjA2MTYxMTE4MjdaMCQxIjAgBgNVBAMTGUNhciByZWdpc3RyeSBDbGl

lbnQgYWxpY2UwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAASdCmAgHdqck7uhAK5siEF/O1EI

UEIYtiR3XVEjbVhNe/6GXFShtsSThXYL9/XK6p4qF4oSy9j/PURMGnWbzSnso3EwbzAOBgNVH

Q8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsGAQUFBwMCMAwGA1UdEwEB/wQCMA

AwHwYDVR0jBBgwFoAU7nVzp7gto++BPlj5KAF1IA62TNEwDwYDVR0RBAgwBocEfwAAATAKBgg

qhkjOPQQDAgNIADBFAiEAsRZlR4sDyxS//BJnYpC684EWu1hO/JU8rkNW6Nn0FFQCIH/p6m6E

LkLNQpx+1QJsWWtH/LdW94WinVylhuA4jggQ",

23 i4Q D3.3 – Blockchain Traceability of Data

 "privilege": {

 "db_permission": {

 "db1": 0,

 "db2": 1

 }

 }

 }

 },

 {

 "user": {

 "id": "bob",

 "certificate":

"MIIBrzCCAVWgAwIBAgIQZOQpmvY31R8yeyy3C

lrJtzAKBggqhkjOPQQDAjAeMRwwGgYDVQQDExNDYXIgcmVnaXN0cnkgUm9vdENBMB4XDTIxMD

YxNjExMTMyN1oXDTIyMDYxNjExMTgyN1owIjEgMB4GA1UEAxMXQ2FyIHJlZ2lzdHJ5IENsaWV

udCBib2IwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAASUDaIwGvRPPHHMzw4UFPTX5BTuPons

8Xv3AR6k/8dDJQsn09qdtKWauLLLGxiLNDY2J8S0qPzJhJVPGF6h/l9Uo3EwbzAOBgNVHQ8BA

f8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsGAQUFBwMCMAwGA1UdEwEB/wQCMAAwHw

YDVR0jBBgwFoAU7nVzp7gto++BPlj5KAF1IA62TNEwDwYDVR0RBAgwBocEfwAAATAKBggqhkj

OPQQDAgNIADBFAiAFxiyZgtiTwvMFF6jKtUE5vV0YzthpWmdRiUIbUclKzQIhALQolKPJl9xm

v66wOyJTvR2q13Fb6j75M4WGcG4KfjDZ",

 "privilege": {

 "db_permission": {

 "db1": 0,

 "db2": 0

 }

 }

 },

 "acl": {

 "read_users": {

 "admin": true

 }

 }

 }

]

 },

 "signature":

"MEUCIHLCSwMzwxmnRfB6s1eON2bMfgDwFvxoSqaZ6ACXcbn0AiEA8KhjY56tSRg

9Hh9UGchhGybTV2rWl1NcsAPLyW71Vu8="

}'

24 i4Q D3.3 – Blockchain Traceability of Data

The user alice has read only access on the db1 DB and read-write access on the db2 DB. These
privileges are defined under db_permission. "db1":0 denotes that the user has read-only
privilege on db1, while "db2":1 denotes that the user has read-write privilege on db2. In other
words, 0 denotes read-only privilege and 1 denotes read-write privilege. As the access control is
not defined for the user, any user can read the credential and privilege of alice, but only
the admin user can modify the properties of the alice user.

The bob user has read-only privilege on db1 and db2. Further, only the admin user can read the
credential and privilege of bob.

Moreover, the bob user cannot be modified as the "read_write_users" section is left out
empty. This means no user has permission to write to user bob.

Updating a user

In order to remove all privileges given to alice, the following steps can be executed:

1. Fetch the current committed information of the alice user.
2. Remove the privilege section, and construct the transaction payload.
3. Submit the transaction payload by issuing a POST /user/tx {txPayload}.

Note that the user_reads contains the version of the read information. If this does not match
the committed version, the transaction would be invalidated. This is useful, because
the alice user can be updated by any other admin between step 1 and 2 listed above. To ensure
serialisability isolation, the read version must be passed. To be more specific, the version in the
metadata section of the query result is available as shown below:

 "metadata": {

 "version": {

 "block_num": 4

 }

 }

The version is used to perform multi-version concurrency control to ensure serialisability isolation
level.

The user_reads section says that commit this transaction only if users specified in
the user_reads list are at a specified version as per the current committed state. Otherwise,
invalidate the transaction and do not apply the changes requested by the transaction.

Note that it is not necessary to pass the version in user_reads. If the user_reads is left out, the
write would be considered as a blind write.

Deleting a user

In order to delete alice from the cluster, the following steps can be executed:

25 i4Q D3.3 – Blockchain Traceability of Data

1. Fetch the current committed information of the alice user, to get the committed version.
2. Add the committed version to the user_reads.
3. Add the alice user to the user_deletes.
4. Submit the transaction payload by issuing a POST /user/tx {txPayload}.

The example uses "block_num": 5 as the version. While executing this example, the
user alice should be queried, and the version provided in the output of the query should be used.
Note that it is not necessary to pass the version in user_reads. If the user_reads is left out,
the delete would be considered as a blind delete. For blind delete, steps 1 and 2 are not needed.

Within a single transaction, one can delete more than a single user. The section user_deletes is
an array, and can be passed many users, all of whom will be deleted, if they exist. For simplicity,
the example deletes a single user only.

curl \

 -H "Content-Type: application/json" \

 -H "TxTimeout: 2s" \

 -X POST http://127.0.0.1:6001/user/tx \

 --data '{

 "payload": {

 "user_id": "admin",

 "tx_id": "1b6d6414-9b58-45d0-9723-1f31712add04",

 "user_reads": [

 {

 "user_id": "alice",

 "version": {

 "block_num": 5

 }

 }

],

 "user_deletes": [

 {

 "user_id": "alice"

 }

]

 },

 "signature":

"MEUCIFDGfF7deiAexylyN/C1DINgz5TA5CbIB/w+AnjhZYYTAiEAvGtgFWWtWWQ

aGr4EWo4whcs/+pHhgYMyYeFPha8YRhg="

}'

Note that within a single transaction, one can do multiple operations such as adding multiple
new users, updating and deleting multiple existing users.

26 i4Q D3.3 – Blockchain Traceability of Data

2.3.2.3 Data Transaction
Data transactions are issued to store, update, and delete any state, i.e., key-value pair on the
ledger. By submitting a POST /data/tx {txPaylod}, one can perform a data transaction,
where txPayload contains reads, writes, and deletes of states.

Storing a new state

Storing a new state with the key1 key.

curl \

 -H "Content-Type: application/json" \

 -H "TxTimeout: 2s" \

 -X POST http://127.0.0.1:6001/data/tx \

 --data '{

 "payload": {

 "must_sign_user_ids": [

 "alice"

],

 "tx_id": "1b6d6414-9b58-45d0-9723-1f31712add81",

 "db_operations": [

 {

 "db_name": "db2",

 "data_writes": [

 {

 "key": "key1",

 "value": "eXl5",

 "acl": {

 "read_users": {

 "alice": true,

 "bob": true

 },

 "read_write_users": {

 "alice": true

 }

 }

 }

]

 }

]

 },

27 i4Q D3.3 – Blockchain Traceability of Data

 "signatures": {

 "alice":

"MEQCIAM/FYzdfVlQGWBPcyDMp2BRDyzQdTdusOl0M/UBCk2gAiAxns+4m30Y/Hz

lO0e0dK0HnaWhbxch5tUys0P0ME7ZPw=="

 }

}'

The payload contains must_sign_user_ids, which is a list of user ids who must sign the
transaction's payload. The db_operations hold the data_writes to be applied on the
specified db_name. The value in data_writes must be encoded in base64. The acl contains a
list of users in the read_users, who can read-only the state, and a list of users in
the read_write_users, who can both read and write to the state. Here, the signatures hold a
map of each user in the must_sign_user_ids to their digital signature.

Checking the existence of a state

The query of key1 can be submitted by either alice or bob, as both have the read permission to
this key. No one else can read key1, including the admin user.

curl \

 -H "Content-Type: application/json" \

 -H "UserID: bob" \

 -H "Signature:

MEUCIQDm6dLmAdd0X49JygTiUkh+brZxprWSr2+hcAH+QIu3AAIgF+m7kO33Y

XyyqSbnXS9HR79wt/aL3JGhKvXFQaFBJms=" \

 -X GET http://127.0.0.1:6001/data/db2/key1 | jq .

The result contains the value associated with the key and also the access_control,
and version as part of the metadata.

Updating an existing state

In order to update the value of key1, the following steps need to be executed:

1. Read the key1 from the cluster.
2. Construct the updated value and transaction payload, including the read version.
3. Submit the data transaction.

Note that the data_reads should contain the version of the key1 that was read before modifying
the value of key1. If data_reads is kept empty, the data_writes would be considered as blind
write.

curl \

 -H "Content-Type: application/json" \

 -H "TxTimeout: 2s" \

 -X POST http://127.0.0.1:6001/data/tx \

 --data '{

 "payload": {

 "must_sign_user_ids": [

28 i4Q D3.3 – Blockchain Traceability of Data

 "alice"

],

 "tx_id": "1b6d6414-9b58-45d0-9723-1f31712add83",

 "db_operations": [

 {

 "db_name": "db2",

 "data_reads": [

 {

 "key": "key1",

 "version": {

 "block_num": 5

 }

 }

],

 "data_writes": [

 {

 "key": "key1",

 "value": "aXDUvZio",

 "acl": {

 "read_users": {

 "alice": true

 },

 "read_write_users": {

 "alice": true

 }

 }

 }

]

 }

]

 },

 "signatures": {

 "alice":

"MEYCIQDFQpAI97qgNGrN/6lWM5v0Zn+ht3+4V5Mr57TIWDZFhAIhAKbatUhwr/l

asFAkTydKSrDr+trEJM3KEnRWlz2kYcTV"

 }

}'

Deleting an existing state

29 i4Q D3.3 – Blockchain Traceability of Data

The following steps need to be executed in order to delete key1:

1. Read the key1 from the cluster (to blindly delete key1, this step can be avoided, as the
read version is not needed).

2. Construct the transaction payload including the read version.
3. Submit the data transaction.

curl \

 -H "Content-Type: application/json" \

 -H "TxTimeout: 2s" \

 -X POST http://127.0.0.1:6001/data/tx \

 --data '{

 "payload": {

 "must_sign_user_ids": [

 "alice"

],

 "tx_id": "1b6d6414-9b58-45d0-9723-1f31712add85",

 "db_operations": [

 {

 "db_name": "db2",

 "data_reads": [

 {

 "key": "key1",

 "version": {

 "block_num": 6

 }

 }

],

 "data_deletes": [

 {

 "key": "key1"

 }

]

 }

]

 },

 "signatures": {

 "alice":

"MEQCIATEMJZ2HYkQtG+ivADylvJRzaksTum3/jN0zeg96+CuAiAEYKugmTbPbHX

sjKnAWOLirNqI0WWOPcLN9jIlVaeseQ=="

30 i4Q D3.3 – Blockchain Traceability of Data

 }

}'

Note that the data_writes and data_deletes can be used with multiple entries, along with
many data_reads within a single transaction.

2.4 Deployment

The latest version of the BCDB server code can be found in the GitHub repository
(https://github.com/hyperledger-labs/orion-server).

BCDB can be easily deployed and operated as a service within a cluster. BCDB is an open-source
project contributed and currently maintained by IBM, and it can be updated from time to time to
enhance existing capabilities, fix issues, and introduce new features.

2.4.1.1 Prerequisites
To build an executable binary file, the following are the prerequisites which should be installed
on the platform on which the BCDB will be deployed:

• Go Programming Language: The DB uses the Go Programming Language for many of its
components. Go version 1.15.x is required.

• Make: To build a binary file and execute unit-test, make utility is required.
• Git: To clone the code repository.
• cURL: To execute queries and transactions provided in the tutorial.

2.4.1.2 Build
To build the executable binary, the following steps need to be executed:

1. To clone the repository, first, create required directories using the command mkdir.
2. Change the current working directory to the above created folder by issing the command

cd.
3. Clone this repository with git clone.
4. Change the current working directory to the repository root directory by issuing cd bcdb-

server
5. To build the binary executable file, issue the command make binary which will create a

bin folder in the current directory. The bin folder will hold two executables named bdb
and signer.

6. Run the bdb executable by issuing the command ./bin/bdb.

For additional health check, one can run make test to ensure all tests pass.

2.4.1.3 Build and start BCDB node inside Docker
Build process includes two steps – crypto materials generation and docker image build.

The minimal set of crypto materials includes 3 sets of certificates:

31 i4Q D3.3 – Blockchain Traceability of Data

1. admin and user – for DB users
2. node – for server node
3. CA – for Certificate Authority

To create a minimal set of cryptographic materials run:

./scripts/cryptoGen.sh sampleconfig

To generate a docker image, after generating the crypto materials, run:

make docker

To invoke a BCDB docker container run:

docker run -it –rm -v $(pwd)/sampleconfig/:/etc/bcdb-server -p 6001:6001 -

p 7050:7050 bcdb-server

2.5 Reference Architecture Diagram

Figure 4 presents the mapping of the i4QBC solution in the reference architecture of i4Q (see D2.7
[5]). The Orion database itself is most likely to be deployed in the platform tier, either on premises
or in the cloud, as a service. The users of the i4QBC solution use the Orion-SDK and may reside in
the platform-tier or even in the edge-tier. This solution shall be utilized by various additional
components at different levels, this service shall bel be analysed in terms of its strengths:

• Platform Tier: One of the sub-components to be used is “Data Brokering and storage”,
enabling various components to access data exhibiting different characteristics in a
unified manner.

• Edge Tier: The mapping to “Data collecting", enables the introduction of data stemming
from multiple levels, including the edge to be integrated within this solution. This
capability will enable specifically support configuration changes tracking at the edge tier.

32 i4Q D3.3 – Blockchain Traceability of Data

Figure 4. i4Q RA mapping with i4Q-BC

33 i4Q D3.3 – Blockchain Traceability of Data

3. Implementation Status

3.1 Current implementation

The current implementation includes two components:

• A blockchain database server.
• A client SDK in Golang.

These two components constitute an MVP solution that is published in open source and readily
available to any i4Q use-case for integration.

3.1.1 Solution features mapping with user requirements
i4QBC is defined in Deliverable 1.4 [3] as a solution that provides easy, trusted and traceable access
to data coming from many different sources. It shall enhance the level of trust in the platform by
employing a blockchain based data service, to support data traceability in the data that flows
directly to the blockchain, thus serving as a single point of truth, preserving provenance and
supporting non-repudiation. Deliverable 1.9 [4] maps the requirements of i4QBC to its functional
components.5 Requirements including the i4Q-BC solution are presented below.

The first requirement from i4QBC is to provide blockchain functionality, thus increasing trust, and
providing a single source of truth for important data records. This requirement is addressed by
the cryptographic layers that envelope the key-value store in Hyperledger Orion. The blockchain
features presented by Orion are: immutability, tamper evidence, authenticity, and non-
repudiation. Immutability and tamper evidence are implemented by employing a set of
cryptographic data structures: a hash chain, hash skip-list, Merkle tree, and Merkle-Patricia trie.
Authenticity and non-repudiation are implemented by the pervasive use of signatures, for both
TXs and queries from the clients, as well as for server responses and stored blocks.

The second requirement from i4QBC is to expose interfaces to allow transaction submission and
queries. This is achieved by the Orion server exposing data centric REST APIs, which allow the
user to submit TXs and execute queries. The programming interface is made even more accessible
and easy to use by the introduction of a client-side golang SDK, which exposes a transactional
data centric API that hides most of the complexities of the REST API from the user. Moreover, the
golang SDK makes accessing the cluster easier, and automatically manages replica selection and
failover.

The third requirement from i4QBC is to provide traceable access to data. This is achieved the
provenance API for exploring data lineage. The provenance API allows the understanding of all
transformations the data underwent along the way: how, when and by whom.

5 See i4Q D1.9 – Requirements Analysis and Functional Specification v2, p61.

34 i4Q D3.3 – Blockchain Traceability of Data

3.1.2 The Hyperledger Orion server
The Hyperledger Orion server implements a replicated blockchain database, and is available as
open source: https://github.com/hyperledger-labs/orion-server

It can be deployed native on a Linux server or as a docker container and supports cluster
deployments (see Section 2 for more details). The feature set that is available addresses the
requirements specified in Task 3.2:

• Authenticity / Non-Repudiation – Proving that the data received exactly as it was sent by
the source, preventing authorship disputes

• Tamper- Evidence – Detection of any changes to the protected object
• Provenance / Data lineage – Recording & understanding of all transformations

the data underwent along the way: how, when and by whom.

In addition, Orion also supports Multi-signature transactions, a mechanism to approve transaction
only when signed by several designated parties.

The Orion DB is mapped for deployment in the platform tier of i4Q.

3.1.3 The Hyperledger Orion client SDK
The Hyperledger Orion SDK-Go implements a client SDK that exposes a rich and easy to use
transactional database API. It is available as open source: https://github.com/hyperledger-
labs/orion-sdk-go

The client SDK can be used to easily integrate the Orion DB into any solution. It can be used in
solutions that reside in the platform tier and/or in the edge tier of i4Q,

3.1.4 Demonstration
The capabilities of Hyperledger Orion for manufacturing quality were demonstrated using a
simple application that saves all the changes to machine and production line configuration in to
the blockchain database.

Data records are machine configuration files, in JSON format.

The actors are:

• Operator: manages multiple machines by changing their configuration, has RW access to
machine configuration. The operator initiates a machine configuration change, prepares
it, and passes it for review to the Controller.

• Controller: reviews and approves operator requests to change machine configuration. The
controller is a required signatory on each configuration change request and has to approve
and commit each request to the database. The controller has RO access to machine
configuration, so he cannot change the configuration by itself.

• Auditor: verifies and audits the configuration changes, periodically or upon request. The
auditor has RO access to machine configuration records and can execute full provenance
queries, tracing the activity of both the operator and controller.

https://github.com/hyperledger-labs/orion-server
https://github.com/hyperledger-labs/orion-sdk-go
https://github.com/hyperledger-labs/orion-sdk-go

35 i4Q D3.3 – Blockchain Traceability of Data

In the demo it was shown how to setup the database, manage users (operators, controller,
auditor), execute configuration change transactions, execute operator change transactions, and
execute various provenance queries, tracing the activities of the actors and evolution of the data.

Figure 5. Changing machine configuration and conducting an audit.

Figure 5 presents the flow of changing machine configuration and conducting an audit:

• Operator prepares a transaction
• Reads existing machine configuration record, captured within the Read-Set
• Changes machine configuration
• Adds controller to “Must-Sign” set
• Co-signs and gives the TX to the controller
• Controller inspects the TX, Co-signs, and submit
• Validates details
• Optional: provenance query? operator, machine, policies?
• Co-signs and submits the TX to Orion
• Auditor executes provenance queries
• Validates policies
• Detects anomalies
• Raises a flag

3.2 Next developments

The next steps in the development of the i4QBC solution include:

36 i4Q D3.3 – Blockchain Traceability of Data

• Performance measurements and optimization of Hyperledger Orion.
• Publishing a paper about Hyperledger Orion, including aspects of the architecture, uses

cases and performance.
• Integrating more closely with one of i4Q’s use cases.
• Publishing a paper or blog post about the role of Hyperledger Orion in i4Q and in

manufacturing quality applications in general.

3.3 History

Version Release date New features

Orion server v0.1.0 June 24 2021 API ready, single node

Orion server v0.2.3 April 5 2022 Cluster deployment, including docker

37 i4Q D3.3 – Blockchain Traceability of Data

4. Conclusions
This deliverable describes the project’s ambition concerning BC technology, and listed the BC
specific requirements derived from Task 3.2. It then introduced the main BC technology concepts
and constructs.

The document compared between two BC technologies, Hyperledger Fabric and Hyperledger
Orion (BCDB), with respect to the project’s requirements, and reasoned about what BC
infrastructure is the best choice for i4Q. As detailed in this deliverable, i4QBC is an entity within
this project that is trusted by all platform users, therefore i4Q can operate under the centralised
trust assumption. Hence, it was agreed by the relevant parties that instead of the initially
suggested Hyperledger Fabric, the i4QBC platform is be based on BCDB, which is specifically
designed to efficiently address the centralised trust ecosystems like i4Q. This change provides
several significant benefits for the i4Q project when compared to Hyperledger Fabric, such as
easy installation and administration, standard programming model, significantly higher efficiency,
and much lower operational costs, while fulfilling all use-case requirements.

Finally, this deliverable described the Hyperledger Orion properties and trust assumptions, the
high-level architecture, its APIs, and included deployment instructions for a Hyperledger Orion
server.

38 i4Q D3.3 – Blockchain Traceability of Data

References
[1] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., D.Caro, A., Enyeart, D., Ferris,

C., Laventman, G, Manevich, Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh,
G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolic, M., Cocco, S. W., & Yellick, J. (2018).
Hyperledger fabric: A distributed operating system for permissioned blockchains. In
Proceedings of the thirteenth EuroSys conference (pp. 1-15).

[2] Gartner. (2020, June 22). Gartner Identifies Top 10 Data and Analytics Technology Trends for 2020
[Press release]. Retrieved from: https://www.gartner.com/en/newsroom/press-releases/2020-
06-22-gartner-identifies-top-10-data-and-analytics-technolo

[3] i4Q deliverable D1.4 – Requirements Analysis and Functional Specification.
[4] i4Q deliverable D1.9 – Requirements Analysis and Functional Specification v2.
[5] i4Q deliverable D2.7 – i4Q Reference Architecture and Viewpoints Analysis v2.

https://www.gartner.com/en/newsroom/press-releases/2020-06-22-gartner-identifies-top-10-data-and-analytics-technolo
https://www.gartner.com/en/newsroom/press-releases/2020-06-22-gartner-identifies-top-10-data-and-analytics-technolo

39 i4Q D3.3 – Blockchain Traceability of Data

Appendix
The PDF version of the i4Q Blockchain Traceability of Data web documentation, which can be
accessed online at: http://i4q.upv.es/3_i4Q_BC/index.html

i4Q Blockchain Traceability of Data

General Description

The Blockchain Traceability of Data (i4QBC) solution aims to enhance the level of trust that
different solutions and components can place on data. Thus, it shall serve as one of the
cornerstones of data storage services to be consumed by different solutions. This solution
provides services of immobility and finality of data, serving as the source of truth, enabling trust
in data by providing the possibility for full provenance and audit trail of data stored. Thus, the
main functionality offered by this solution is comprised of data trust traceability, enabling a full
audit trail of assets and data.

The Blockchain Traceability of Data (i4QBC) solution is based on the Hyperledger Orion blockchain
database. Hyperledger Orion is a centralised, trusted blockchain database that provides tamper-
evidence, provenance, data lineage, authenticity, and non-repudiation through data centric
Application Programming Interfaces (APIs), with transactional semantics and very simple well-
known programming model.

The Hyperledger Orion server implements a replicated blockchain database, and is available as
open source: https://github.com/hyperledger-labs/orion-server It can be deployed native on a
Linux server or as a docker container and supports cluster deployments.

The Hyperledger Orion SDK-Go implements a client SDK that exposes a rich and easy to use
transactional database API. It is available as open source: https://github.com/hyperledger-
labs/orion-sdk-go The client SDK can be used to easily integrate the Orion DB into any solution.

Features

The main features provided by this solution include:

http://i4q.upv.es/3_i4Q_BC/index.html
https://github.com/hyperledger-labs/orion-server
https://github.com/hyperledger-labs/orion-sdk-go
https://github.com/hyperledger-labs/orion-sdk-go

40 i4Q D3.3 – Blockchain Traceability of Data

1. A key-value database: A replicated key-value database with transactional APIs. A data
centric API provides a familiar and easy to use programming paradigm, which reduces
complexity and cost compared to traditional blockchain platforms. A cluster of servers
provide a fault tolerant & highly available solution.

2. Immutability and tamper evidence: All stored data is bound with cryptographic data
structures (e.g.: a hash-chain), which ensures immutability and tamper evidence.

3. Authentication and non-repudiation: The use of digital signatures by clients and servers,
for both requests, responses, and stored data, provides authentication as well as non-
repudiation.

4. Privacy: Fine-grain privacy is achieved using key-level access control, which is enforced
by the digital signatures provided by users.

5. Multi-party transactions: The ability to require that multiple users sign a transaction in
order to make it valid, allowing tight controls on data mutations and multi-party
agreements.

6. Provenance: All historical changes to the data are maintained within the ledger as well as
in a graph structure. The solution allows the user to execute provenance queries on those
historical changes to understand the lineage of each data item.

ScreenShots

The main components of Hyperledger Orion are depicted below:

41 i4Q D3.3 – Blockchain Traceability of Data

42 i4Q D3.3 – Blockchain Traceability of Data

The cluster, server API, and SDK of Hyperledger Orion are shown below:

An example showing how machine configuration can be tracked using Hyperledger Orion:

43 i4Q D3.3 – Blockchain Traceability of Data

Commercial Information

Authors

Company Website Logo

IBM https://research.ibm.com/labs/haifa/

License

The Hyperledger Orion server and the Go-SDK are open source with Apache License 2.0. See:
- Server license - SDK license

Pricing

Subject Hyperledger Orion (Server, SDK)

Payment Model One-off

Price Free

Associated i4Q Solutions

Required

• i4Q Blockchain Traceability of Data solution has no dependency on another i4Q solutions.

Optional

• i4Q IIoT Security Handler may be used as a Certificate Authority (CA) provider.

System Requirements

• OS: Linux (tested on Ubuntu and RedHat).
• Hardware: a set of servers capable of running a database cluster. For production at least

3 are required for fault tolerance, however 5 servers are recommended.

API Specification, User Manual, and Deployment Instructions

The complete documentation of Hyperledger Orion, including API Specification, User Manual,
and Deployment Instructions is specified here: http://labs.hyperledger.org/orion-server

https://research.ibm.com/labs/haifa/
https://github.com/hyperledger-labs/orion-server/blob/main/LICENSE
https://github.com/hyperledger-labs/orion-sdk-go/blob/main/LICENSE
http://i4q.upv.es/6_i4Q_SH/index.html
http://labs.hyperledger.org/orion-server

44 i4Q D3.3 – Blockchain Traceability of Data

The sources of Hyperledger Orion can be found here: - Server: https://github.com/hyperledger-
labs/orion-server - SDK: https://github.com/hyperledger-labs/orion-sdk-go

Docker images can be found here: https://hub.docker.com/r/orionbcdb/orion-server

Hyperledger Orion was presented in a Hyperledger London meetup, see the video on YouTube.

https://github.com/hyperledger-labs/orion-server
https://github.com/hyperledger-labs/orion-server
https://github.com/hyperledger-labs/orion-sdk-go
https://hub.docker.com/r/orionbcdb/orion-server
https://youtu.be/0LTxv7mlx3c

